Home
Class 12
MATHS
Consider triangle A O B in the x-y plane...

Consider triangle `A O B` in the `x-y` plane, where `A-=(1,0,0),B-=(0,2,0)a n d O-=(0,0,0)dot` The new position of `O ,` when triangle is rotated about side `A B` by `90^0` can be a. `(4/5,3/5,2/(sqrt(5)))` b. `((-3)/5,(sqrt(2))/5,2/(sqrt(5)))` c. `(4/5,2/5,2/(sqrt(5)))` d. `(4/5,2/5,1/(sqrt(5)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider triangle AOB in the x-y plane, where A-=(1,0,0),B-=(0,2,0) and O-=(0,0,0) The new position of O, when triangle is rotated about side AB by 90^(0) can be a.((4)/(5),(3)/(5),(2)/(sqrt(5))) b.((-3)/(5),(sqrt(2))/(5),(2)/(sqrt(5))) c.((4)/(5),(2)/(5),(2)/(sqrt(5))) d.((4)/(5),(2)/(5),(1)/(sqrt(5)))

(1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))=0

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

If sin^(-1)x+cot^(-1)(1/2)=pi/2,\ t h e n\ x is 0 b. 1/(sqrt(5)) c. 2/(sqrt(5)) d. (sqrt(3))/2

Show that 4sin27^(0)=(5+sqrt(5))^((1)/(2))-(3-sqrt(5))^((1)/(2))

x^(2)+(3-sqrt(5))x-3sqrt(5)=0

If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are 3/5,4/5 b. 1/(sqrt(3)),sqrt(2/3) c. 1/2,(sqrt(3))/2 d. none of these

If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are 3/5,4/5 b. 1/(sqrt(3)),sqrt(2/3) c. 1/2,(sqrt(3))/2 d. none of these

If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are 3/5,4/5 b. 1/(sqrt(3)),sqrt(2/3) c. 1/2,(sqrt(3))/2 d. none of these