Home
Class 9
MATHS
In a quadrilateral ABCD, show that (AB...

In a quadrilateral ABCD, show that
`(AB+BC+CD+DA)gt(AC+BD)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a quadrilateral ABCD, show that (AB+BC+CD+DA)lt2(BD+AC).

In a quadrilateral ABCD, prove that : (i) AB+BC+CD gt DA (ii) AB+BC+CD+DA gt 2AC (iii) AB+BC+CD+DA gt 2BD

The given figure shows a quadrilateral ABCD. Prove that : AB+BC+CD+DA gt AC+BD

The given figure shows a quadrilateral ABCD. Prove that : AB+BC+CD+DA gt AC+BD

ABCD is a quadri,aterial prove that (AB+BC+CD+DA)gt(AC+BD)

If a circle touches all the sides of the quadrilateral ABCD,then show that AB+CD=BC+DA.

Show that in a quandrilateral ABCD, AB + BC + CD+ DA lt 2 (BD+AC) .

In quadrilatcal ABCD,prove that AB+BC+CD+AD<2(BD+AC)

If in the cyclic quadrilateral AB||CD , then prove that AD =BC and AC=BD.

In a quadrilateral ABCD prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)+4PQ^(2) where P and Q are middle points of diagonals AC and BD.