Home
Class 12
MATHS
If P1:vec r.vecn1-d1=0 P2:vec r.vec n2-d...

If `P_1:vec r.vecn_1-d_1=0` `P_2:vec r.vec n_2-d_2=0` and `P_3:vec r.vecn_3-d_3=0` are three non-coplanar vectors, then three lines `P_1= 0`, `P_2=0`; `P_2=0`,`P_3=0` ; `P_3=0` `P_1=0` are

Promotional Banner

Similar Questions

Explore conceptually related problems

If P_1:vec r.vecn_1-d_1=0 P_2:vec r.vec n_2-d_2=0 and P_3:vec r.vecn_3-d_3=0 are three planes and vec n_1, vec n_2 and vec n_3 are three non-coplanar vectors, then three lines P_1= 0 , P_2=0 ; P_2=0 , P_3=0 ; P_3=0 P_1=0 are a. parallel lines b. coplanar lines c. coincident lines d. concurrent lines

If P_1:vec r.vecn_1-d_1=0 P_2:vec r.vec n_2-d_2=0 and P_3:vec r.vecn_3-d_3=0 are three planes and vec n_1, vec n_2 and vec n_3 are three non-coplanar vectors, then three lines P_1= P_2=0 ; P_2= P_3=0 ; P_3= P_1=0 are a. parallel lines b. coplanar lines c. coincident lines d. concurrent lines

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

( If the planes )/(r*n_(1))=p_(1),vec r.n_(2)=p_(2) and vec r.n_(3)=p_(3), have a common line of intersection then

For three vectors vec p,vec q and vec r if vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

IF P_1, P_2, P_3, P_4 are points in a plane or space and O is the origin of vectors, show that P_4 coincides with Oiff( vec O P)_1+ vec P_1P_2+ vec P_2P_3+ vec P_3P_4= vec 0.

If vec p&vec s are not perpendicular to each other and vec r&vec &vec p=vec p xxvec p and vec r.vec s=0, then vec r=

If vec(P) = (k,2,3) and vec(Q) = (0,3,k) and vec(P) bot vec(Q) , then find the value of k .

If vec r_1, vec r_2, vec r_3 are the position vectors of the collinear points and scalar p a n d q exist such that vec r_3=p vec r_1+q vec r_2, then show that p+q=1.

If vec r_1, vec r_2, vec r_3 are the position vectors of the collinear points and scalar p a n d q exist such that vec r_1=p vec r_2+q vec r_3, then show that p+q=1.