Home
Class 12
MATHS
If lim(x->2)f(f(x)+g(x))=2 and lim(x-...

If `lim_(x->2)f(f(x)+g(x))=2` and `lim_(x->2)(f(x)-g(x))=1` then `lim_(x->2) f(x)*g(x)` need not exist.

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr2)f(f(x)+g(x))=2 and lim_(x rarr2)(f(x)-g(x))=1 then lim_(x rarr2)f(x)*g(x) need not exist.

lim_(x rarr a)[f(x)+g(x)]=2 and lim_(x rarr a)[f(x)-g(x)]=1 then lim_(x rarr a)f(x)g(x)

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

Which of the following statement(s) is (are) INCORRECT ?. (A) If lim_(x->c) f(x) and lim_(x->c) g(x) both does not exist then lim_(x->c) f(g(x)) also does not exist.(B) If lim_(x->c) f(x) and lim_(x->c) g(x) both does not exist then lim_(x->c) f'(g(x)) also does not exist.(C) If lim_(x->c) f(x) exists and lim_(x->c) g(x) does not exist then lim_(x->c) g(f(x)) does not exist. (D) If lim_(x->c) f(x) and lim_(x->c) g(x) both exist then lim_(x->c) f(g(x)) and lim_(x->c) g(f(x)) also exist.

If ("lim")_(x->a)[f(x)+g(x)]=2a n d ("lim")_(x->a)[f(x)-g(x)]=1, then find the value of ("lim")_(x->a)f(x)g(x)dot

If lim_(x->a)(f(x)/(g(x))) exists, then

lim_(x rarr5)f(x)=2 and lim_(x rarr5)g(x)=0, then lim_(x rarr5)(f(x))/(g(x)) does not exist.

If lim_(x rarr5)f(x)=0 and lim_(x rarr5)g(x)=2, then Lim_(x rarr5)(f(x))/(g(x)) does not exist.