Home
Class 12
MATHS
5*tan^(-1)(sqrt(1+x^(2))-1)/(x),x!=0...

5*tan^(-1)(sqrt(1+x^(2))-1)/(x),x!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following functions with respect to x:tan^(-1){sqrt(1+x^(2))-x},x in R (ii) tan^(-1){(sqrt(1+x^(2))-1)/(x)},x!=0

Write each of the following in the simplest form: tan^(-1){sqrt(1+x^(2))-x},x in R (ii) tan^(-1){(sqrt(1+x^(2))-1)/(x)},x!=0

tan^(-1)(x+sqrt(1+x^(2)))=

Differentiate the following functions with respect to x : (i) tan^(-1){sqrt(1+x^2)-x} , x in RR (ii) tan^(-1){(sqrt(1+x^2)-1)/x},\ \ x!=0

Write each of the following in the simplest form: tan^(-1){sqrt(1+x^2)-x},\ \ x in R (ii) tan^(-1){(sqrt(1+x^2)-1)/x},\ \ x!=0

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then