Home
Class 12
MATHS
Find the value of lim(n rarr oo)sum(r=1)...

Find the value of `lim_(n rarr oo)sum_(r=1)^n(r^2)/(n^3+n^2+r)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(3))/(r^(4)+n^(4))?

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

If alpha and beta are the roots of the equation 375x^(2)-25x-2=0, then the value of lim_(n rarr oo)(sum_(r=1)^(n)alpha^(r)+sum_(r=1)^(n)beta^(r)) is

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

The value of lim_(n rarr oo)(sum_(r=1)^(100)(n+r)^(10))/(n^(10)+10^(10)) is equal to