Home
Class 12
MATHS
int (x^4+1)/(x^6+1) dx (1) tan^(-1)x -...

`int (x^4+1)/(x^6+1) dx` (1) `tan^(-1)x - tan^(-1)x^3 + c ` (2)`tan^(-1)x -1/3 tan^(-1)x^3 + c` (3)`tan^(-1)x + tan^(-1)x^3 + c` (4) `tan^(-1)x + 1/3 tan^(-1)x^3 + c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int (x^(4) + 1)/(x^(6) + 1) dx = A tan^(-1) x + B tan^(-1) x^(3) + c , then (A,B) =

Solve: tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)= tan^(-1)3x.

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

If tan^(-1)3+ tan^(-1)x = tan^(-1)8 , then: x=

Solve for x, tan^(-1)(x-1)+tan^(-1)x +tan^(-1)(x+1) =tan^(-1)3x .

Solve for x : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .