Home
Class 12
MATHS
If log(x^2+y^2)=2\ tan^(-1)(y/x) , show ...

If `log(x^2+y^2)=2\ tan^(-1)(y/x)` , show that `(dy)/(dx)=(x+y)/(x-y)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y) .

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x) , then, show that dy/dx=(x+y)/(x-y)