Home
Class 12
MATHS
If y=(tan^(-1)x)^2 , then prove that (1+...

If `y=(tan^(-1)x)^2` , then prove that `(1+x^2)^2\ y_2+2x\ (1+x^2)y_1=2` .

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

Given , ` y = (tan^(-1) x)^(2)`
On differentiating both sides w.r.t.x, we get
`(dy)/(dx) = 2 tan ^(-1) xx (d)/(dx) (tan^(-1) x) = 2 (tan^(-1)x) (1)/(1 + x^(2))`
or ` (1 + x^(2) )y_(1) = 2 tan^(-1) x `
Again , differentiating both sides w.r.t.x, we get
`(1 + x^(2)) (dy_(1))/(dx) + y_(1) (d)/(dx) (1 + x^(2)) = (2)/(1 + x^(2))`
`rArr (1 + x^(2))y_(2)+ y_(1) (0 + 2x) = (2)/(1 + x^(2))`
` rArr (1 + x^(2))^(2) y_(2) + 2x (1 + x^(2))y_(1) = 2` .
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y=(sin^(-1)x)^2 , then prove that (1-x^2)y_2-xy_1=2

If y=e^acos^((-1)x) , then prove that (1-x^2)y_2-x y_1-a^2y=0 .

If y=sin(mtan^(-1)x) , prove that : (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)+m^(2)y=0 .

If y=(tan^(-1)x)^2 , show that (x^2+1)^2y_2+2x(x^2+1)y_1=2 .

If y=e^(tan^^)((-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=e^(tan^(-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=(tan^(-1)x)^(2) show that (x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2

If y=(cos^(-1)x)^(2) , then prove that : (1-x^(2))y_(2)-xy_(1)-2=0 .

If y=(cot^(-1)x)^(2), prove that y_(2)(x^(2)+1)^(2)+2x(x^(2)+1)y_(1)=2

If y=(cot^(-1)x)^(2), prove that y_(2)(x^(2)+1)^(2)+2x(x^(2)+1)y_(1)=2