Home
Class 12
MATHS
If x=a(1+costheta) , y=a(theta+sintheta)...

If `x=a(1+costheta)` , `y=a(theta+sintheta)` , prove that `(d^2y)/(dx^2)=(-1)/a` at `theta=pi/2` .

A

`-(1)/(a)`

B

`(1)/(a)`

C

`-1`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
A

Given , ` x = a (1 + cos theta) , y = a (a theta + sin theta)`
` rArr (dx)/(d theta) = - a sin theta , (dy)/(d theta ) = a (1 + cos theta)`
` therefore (dy)/(dx) = (1 + cos theta)/( - sin theta) = (2 cos^(2) ""(theta)/(2))/(-2 sin "" (theta)/(2) cos "" (theta)/(2))`
` rArr (dy)/(dx) =- cot"" (theta)/(2)`
` therefore (d^(2)y)/(dx^(2)) = (d)/(dx) ((dy)/(dx))= (d)/(d theta)((dy)/(dx)) . (d theta)/(dx)`
` = (d)/(d theta) (- cot "" ( theta)/(2)). (1) /(- a sin theta) `
` = (1)/(2) "cosec"^(2) (theta)/(2). (1)/( - a sin theta)`
`therefore ((d^(2) y)/(dx^(2)))_(e = (pi)/(2)) = (1)/(2) . 2 . (1)/(-a) =- (1)/(a)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If x=a(1+cos theta),y=a(theta+sin theta), prove that (d^(2)y)/(dx^(2))=(-1)/(a) at theta=(pi)/(2)

If x=a(1-cos theta),y=a(theta+sin theta), prove that (d^(2)y)/(dx^(2))=-(1)/(a) at theta=(pi)/(2)

If x=a(1-cos^(3)theta),y=as in^(3)theta, prove that (d^(2)y)/(dx^(2))=(32)/(27a) at theta=(pi)/(6)

If x=a(theta+sin theta),y=a(1+cos theta), prove that (d^(2)y)/(dx^(2))=-(a)/(y^(2))

If y=a(theta+sintheta),x=a(1-costheta)," then "(dy)/(dx)=

If x=costheta(1+costheta),y=sintheta(1+costheta)," then "((dy)/(dx))" at "theta=(pi)/(2) is

Find dy/dx when x = a(1 + costheta) , y= a(theta-sintheta)

If x=sintheta+thetacostheta,y=costheta-thetasintheta," then "((dy)/(dx))" at "theta=(pi)/(2) is

If x=theta-(1)/(theta)" and "y=theta+(1)/(theta)," then: "(d^(2)y)/(dx^(2))=

If x =theta -sin theta ,y=1-cos theta,then (d^(2)y)/(dx^(2))=