Home
Class 12
MATHS
If f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n...

If `f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n(n-1)(n-2))/(6) x^(3)`
` + ...+x^(n) , "then" f''(1) ` is equal to

A

`n(n-1) 2^(n-1)`

B

`(n-1) 2^(n-1)`

C

`n(n-1) 2^(n-2)`

D

`n(n-1) 2^(n)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given `f(x) = 1 + nx + (n(n-1))/(2!) x^(2) + (n(n-1)(n-2))/(3!) x^(3) + ... + x^(n)`
` rArr f(x) = (1 + x)^(n)`
`rArr f'(x) = n (1 + x)^(n-1)`
` rArr f''(x) = n (n-1) (1 + x)^(n-2)`
` rArr f'''(1) = n (n-1) 2^(n-2)` .
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1) = 2, " then" f'(1) is equal to

If f(x)=(a-n^(n))^(1//n) where a gt 0 and n in N , then f[f(x)] is equal to :

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=(1-x^(n+1))/(1-x) and g(x)=1-(2)/(x)+(3)/(x^(2))-...+(-1)^(n)(n+1)/(x^(n)) Then the constant term in f'(x)xx g(x) is equal to -

Let F: (0,2) to R be defined as f (x) = log _(2) (1 + tan ((pix)/(4))). Then lim _( n to oo) (2)/(n) (f ((1)/(n )) + f ((2)/(n)) + …+ f (1) ) is equal to

- (((n) / (1)) * ((1 + x) / (1 + nx)) + ((n (n-1)) / (1.2)) ((1 + 2x) / ((1 + nx) ^ (2))) - ((n (n-1) (n-2)) / (1.2.3)) ((1 + 3x) / ((1 + nx) ^ (3)))