Home
Class 12
MATHS
if x=loge t , t > 0 and y+1=t^2 then (d^...

if `x=log_e t , t > 0` and `y+1=t^2` then `(d^2y)/(dx^2)`

A

`4e^(2x)`

B

`-(1)/(2) e^(-4e)`

C

` - (3)/(4)e^(5x)`

D

`4e^(x)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given , ` x = log _(e) t rArr e^(x) = t `
and ` y + 1 = t^(2) rArr (dx)/(dy) = (1)/(2e^(2x))`
Again , differentiating both sides w.r.t.y, we get
`(d^(2) x)/(dy^(2)) = (1)/(2) e^(-2x) (-2) (dx)/(dy)`
` =- e^(-2x). (1)/(2e^(2x)) = - (1)/(2) e^(-4x)` .
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

if x=log_(e)t,t>0 and y+1=t^(2) then (d^(2)y)/(dx^(2))

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x=logt and y=t^(2)-1 , then what is (d^(2)y)/(dx^(2)) at t = 1 equal to?

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

let y=t^(10)+1, and x=t^(8)+1, then (d^(2)y)/(dx^(2)) is

If x=sin^(-1)t and y=log(1-t^(2)), then ((d^(2)y)/(dx^(2)))_(t=(1)/(2)) is

If t is a parameter and x = t + 1/t , y = t - 1/t , " then " (d^2 y)/(dx^2) =