Home
Class 12
MATHS
If y = x log ((x)/(a + bx)), " then " (...

If ` y = x log ((x)/(a + bx)), " then " (x^(3) d^(2) y)/(ax^(2))` is equal to

A

`x(dy)/(dx) - y`

B

`(x (dy)/(dx) - y)^(2)`

C

`y (dy)/(dx) - x `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \frac{x^3 \frac{d^2 y}{dx^2}}{a x^2} \) given that \( y = x \log\left(\frac{x}{a + bx}\right) \). ### Step 1: Rewrite the function Start with the given function: \[ y = x \log\left(\frac{x}{a + bx}\right) \] Using the properties of logarithms, we can rewrite this as: \[ y = x \left( \log(x) - \log(a + bx) \right) \] ### Step 2: Differentiate \( y \) with respect to \( x \) Using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}\left(x \log(x)\right) - \frac{d}{dx}\left(x \log(a + bx)\right) \] For the first term, apply the product rule: \[ \frac{d}{dx}(x \log(x)) = \log(x) + 1 \] For the second term, again apply the product rule: \[ \frac{d}{dx}(x \log(a + bx)) = \log(a + bx) + \frac{bx}{a + bx} \] Thus, \[ \frac{dy}{dx} = \log(x) + 1 - \left( \log(a + bx) + \frac{bx}{a + bx} \right) \] ### Step 3: Simplify \( \frac{dy}{dx} \) Combining the terms we have: \[ \frac{dy}{dx} = \log(x) - \log(a + bx) + 1 - \frac{bx}{a + bx} \] ### Step 4: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now, we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\log(x) - \log(a + bx) + 1 - \frac{bx}{a + bx}\right) \] This gives: \[ \frac{d^2y}{dx^2} = \frac{1}{x} - \frac{b}{a + bx} - \frac{b(a + bx) - bx \cdot b}{(a + bx)^2} \] Simplifying this expression will yield \( \frac{d^2y}{dx^2} \). ### Step 5: Substitute \( \frac{d^2y}{dx^2} \) into \( \frac{x^3 \frac{d^2y}{dx^2}}{a x^2} \) Now, we need to multiply \( \frac{d^2y}{dx^2} \) by \( x^3 \) and divide by \( ax^2 \): \[ \frac{x^3 \frac{d^2y}{dx^2}}{a x^2} = \frac{x \frac{d^2y}{dx^2}}{a} \] ### Step 6: Final expression After substituting and simplifying, we can find the final expression for the given problem.

To solve the problem, we need to find the expression for \( \frac{x^3 \frac{d^2 y}{dx^2}}{a x^2} \) given that \( y = x \log\left(\frac{x}{a + bx}\right) \). ### Step 1: Rewrite the function Start with the given function: \[ y = x \log\left(\frac{x}{a + bx}\right) \] Using the properties of logarithms, we can rewrite this as: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y = In ((x)/(a + bx))^(x), "then " x^(3)(d^(y))/(dx^(2)) is equal to

If y=log_(e)((x)/(a+bx))^(x), then x^(3)y_(2)=

If y=log(x+sqrt(x^(2) +a^(2))) , then (d^(2)y)/(dx^(2)) , is equal to

If y=log (log x) then (d^2y)/(dx^2) is equal to

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y =3 cos (log x) + 4 sin (log x), then x ^(2) (d ^(2) y )/( dx ^(2)) + x (dy)/(dx) =