Home
Class 12
MATHS
If (x-a)^2+(y-b)^2=c^2, for some c >0, ...

If `(x-a)^2+(y-b)^2=c^2,` for some `c >0,` `p rov et h a t([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2))i sacon s t a n tin d e p e n d e n tof` a and b.

A

`-c`

B

`-(c) /(a)`

C

`- (a)/(c) `

D

`- abc `

Text Solution

Verified by Experts

The correct Answer is:
A

Given , ` (x - a)^(2) + (y - b)^(2) = c^(2)` …(i)
On differentiating both sides w.r.t.x, we get
` 2(x-a) + 2 (y - b)(dy)/(dx) = 0 `
`rArr (dy)/(dx) = - (x-a)/(y-b) ` …(ii)
Again , differentiating both sides w.r.t.x, we get
`(d^(2) y)/( dx^(2) )= - ((y - b) *1- (x -a)(dy)/(dx))/((y - b)^(2))`
` = - ((y - b) *1-(x -a) (-(x -a)/(y-b)))/((y - b)^(2))` [ from Eq. (ii) ]
`= - ((y-b)^(2) + (x -a)^(2))/((y- b)^(3)) = - (c^(3))/((y-b)^(3))` [ from Eq. (i) ]
Now , `([1 + ((dy)/(dx))^(2)]^(3//2))/((d^(2)y)/(dx^(2)))=([1 + ((x-a)/(y-b))^(2)]^(3//2))/((c^(2))/((y-b)^(3)))`
` ({(y-b)^(2) + (x - a)^(2)}^(3//2))/({(y-b)^(2)}^(3//2) ((-c^(2)))/((y-b)^(3)) )=((c^(2))^(3//2))/(-c^(2)) = (c^(3))/(-c^(2) ) = - c ` .
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If x=cos t,y=log_(e)t then at t=(pi)/(2),(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

if (x-a)^(2)+(y-b)^(2)=c^(2) then (1+((dy)/(dx))^(2))/((d^(2)y)/(dx^(2)))=?

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)