Home
Class 12
MATHS
Derivative of tan^(-1)((x)/(sqrt( 1 - x...

Derivative of ` tan^(-1)((x)/(sqrt( 1 - x^(2))))` with respect to
` sin^(-1) (3x - 4x^(3)) ` is

A

`(1)/(sqrt( 1- x^(2)))`

B

`(3)/(sqrt(1 -x^(2)))`

C

3

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( u = \tan^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right) \) with respect to \( v = \sin^{-1}(3x - 4x^3) \), we will use the chain rule. Let's denote: - \( u = \tan^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right) \) - \( v = \sin^{-1}(3x - 4x^3) \) We need to find \( \frac{du}{dv} \). ### Step 1: Differentiate \( u \) with respect to \( x \) Using the chain rule, we first find \( \frac{du}{dx} \): 1. Let \( y = \frac{x}{\sqrt{1 - x^2}} \). 2. Then, \( u = \tan^{-1}(y) \). 3. The derivative of \( u \) with respect to \( y \) is: \[ \frac{du}{dy} = \frac{1}{1 + y^2} \] 4. Now, we differentiate \( y \): \[ y = \frac{x}{\sqrt{1 - x^2}} \implies \frac{dy}{dx} = \frac{\sqrt{1 - x^2} \cdot 1 - x \cdot \frac{-x}{\sqrt{1 - x^2}}}{1 - x^2} = \frac{\sqrt{1 - x^2} + \frac{x^2}{\sqrt{1 - x^2}}}{1 - x^2} = \frac{1}{(1 - x^2)^{3/2}} \] 5. Thus, using the chain rule: \[ \frac{du}{dx} = \frac{1}{1 + y^2} \cdot \frac{dy}{dx} \] Substitute \( y = \frac{x}{\sqrt{1 - x^2}} \): \[ 1 + y^2 = 1 + \frac{x^2}{1 - x^2} = \frac{1 - x^2 + x^2}{1 - x^2} = \frac{1}{1 - x^2} \] Therefore: \[ \frac{du}{dx} = \frac{1}{\frac{1}{1 - x^2}} \cdot \frac{1}{(1 - x^2)^{3/2}} = (1 - x^2)^{1/2} \] ### Step 2: Differentiate \( v \) with respect to \( x \) Now, we differentiate \( v \): 1. \( v = \sin^{-1}(3x - 4x^3) \) 2. The derivative of \( v \) with respect to \( x \) is: \[ \frac{dv}{dx} = \frac{1}{\sqrt{1 - (3x - 4x^3)^2}} \cdot (3 - 12x^2) \] ### Step 3: Use the chain rule to find \( \frac{du}{dv} \) Using the chain rule: \[ \frac{du}{dv} = \frac{du}{dx} \cdot \frac{dx}{dv} = \frac{du}{dx} \cdot \frac{1}{\frac{dv}{dx}} \] Substituting the derivatives we found: \[ \frac{du}{dv} = \frac{(1 - x^2)^{1/2}}{\frac{1}{\sqrt{1 - (3x - 4x^3)^2}} \cdot (3 - 12x^2)} \] ### Final Answer Thus, the derivative \( \frac{du}{dv} \) is: \[ \frac{du}{dv} = \frac{(1 - x^2)^{1/2} \cdot \sqrt{1 - (3x - 4x^3)^2}}{3 - 12x^2} \]

To find the derivative of \( u = \tan^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right) \) with respect to \( v = \sin^{-1}(3x - 4x^3) \), we will use the chain rule. Let's denote: - \( u = \tan^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right) \) - \( v = \sin^{-1}(3x - 4x^3) \) We need to find \( \frac{du}{dv} \). ### Step 1: Differentiate \( u \) with respect to \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

Derivative of tan ^(-1) ""((x)/(sqrt(1-x^(2)))) with respect sin ^(-1) ( 3x - 4x^(3)) is

The derivative of sin^(-1) (2x sqrt(1-x^(2))) with respect to ltbr. sin^(-1)(3x - 4x^(3)) is

Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

The derivative of tan^(-1) ((2x)/(1-x^(2))) with respect to cos^(-1) sqrt(1 - x^(2)) is

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to sin^(-1)(2x sqrt(1-x^(2))), if -(1)/(sqrt(2))

The derivative of sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2)) with respect to x is

Derivative of tan^(-1){(x)/(1+sqrt(1-x^(2)))}w.r.t.sin^(-1) is

The derivative of tan^(-1)2(x)/(1-x^(2)) with respect to sin^(-1)2(x)/(1+x^(2)), is

Darivative of tan ^(-1) ((x)/( sqrt(1-x^(2)))) w.r.t. sin ^(-1) (3x -4x^(3)) is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -MHT CET CORER
  1. If y = e^(m sin^(-1) x) and (1-x^(2)) ((dy)/(dx))^(2) = Ay^(2) , then...

    Text Solution

    |

  2. If log (10) ((x^(2) - y^(2))/(x^(2) + y^(2))) = 2 , " then" (dy)/(dx)...

    Text Solution

    |

  3. Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to ...

    Text Solution

    |

  4. If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the...

    Text Solution

    |

  5. If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is

    Text Solution

    |

  6. At the point x = 1 , then function f(x) = {{:(x^(3) - 1, 1lt x lt o...

    Text Solution

    |

  7. If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

    Text Solution

    |

  8. If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t, then the value of ...

    Text Solution

    |

  9. y=logtan(x/2)+sin^(-1)(cosx), then dy/dx is

    Text Solution

    |

  10. If x^(2) y^(5) = (x + y)^(7) , " then " (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  11. The equation of tangent to the curve given by x = 3 cos theta , y ...

    Text Solution

    |

  12. Differentiate (logx)^x with respect to logx .

    Text Solution

    |

  13. If x sec theta , y = tan theta , then the value of (d^(2) y)/(dx^(...

    Text Solution

    |

  14. If x=f(t) and y=g(t) , then write the value of (d^2y)/(dx^2) .

    Text Solution

    |

  15. Find (dy)/(dx) , " if x " = 2 cos theta - cos 2 theta and y = 2sin...

    Text Solution

    |

  16. find the derivative of e^(x) + e^(y) = e^(x +y)

    Text Solution

    |

  17. If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

    Text Solution

    |

  18. The derivative of cos^(3)x w.r.t. sin^(3)x is

    Text Solution

    |

  19. The derivative of log|x| is

    Text Solution

    |

  20. The function f(x)=e^(-|x|) is

    Text Solution

    |