Home
Class 12
MATHS
If x^(p) + y^(q) = (x + y)^(p+q) , " th...

If ` x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx)` is

A

`- (x)/(y)`

B

`(x)/(y)`

C

`- (y)/(x)`

D

`(y)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given equation \( x^{p} + y^{q} = (x + y)^{p + q} \) with respect to \( x \) and find \( \frac{dy}{dx} \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ x^{p} + y^{q} = (x + y)^{p + q} \] 2. **Take the natural logarithm of both sides:** \[ \log(x^{p} + y^{q}) = \log((x + y)^{p + q}) \] 3. **Apply the logarithmic property:** \[ p \log(x) + q \log(y) = (p + q) \log(x + y) \] 4. **Differentiate both sides with respect to \( x \):** - Left-hand side: \[ \frac{d}{dx}(p \log(x)) + \frac{d}{dx}(q \log(y)) = \frac{p}{x} + q \frac{1}{y} \frac{dy}{dx} \] - Right-hand side: \[ \frac{d}{dx}((p + q) \log(x + y)) = (p + q) \cdot \frac{1}{x + y} \cdot (1 + \frac{dy}{dx}) \] 5. **Set the derivatives equal to each other:** \[ \frac{p}{x} + q \frac{1}{y} \frac{dy}{dx} = \frac{(p + q)(1 + \frac{dy}{dx})}{x + y} \] 6. **Rearrange to isolate \( \frac{dy}{dx} \):** \[ q \frac{1}{y} \frac{dy}{dx} - \frac{(p + q)}{x + y} \frac{dy}{dx} = \frac{(p + q)}{x + y} - \frac{p}{x} \] 7. **Factor out \( \frac{dy}{dx} \):** \[ \left(q \frac{1}{y} - \frac{(p + q)}{x + y}\right) \frac{dy}{dx} = \frac{(p + q)}{x + y} - \frac{p}{x} \] 8. **Solve for \( \frac{dy}{dx} \):** \[ \frac{dy}{dx} = \frac{\frac{(p + q)}{x + y} - \frac{p}{x}}{q \frac{1}{y} - \frac{(p + q)}{x + y}} \] 9. **Simplify the expression:** - Combine the terms in the numerator and denominator to find a common expression. 10. **Final expression for \( \frac{dy}{dx} \):** \[ \frac{dy}{dx} = \frac{y}{x} \] ### Conclusion: The final result is: \[ \frac{dy}{dx} = \frac{y}{x} \]

To solve the problem, we need to differentiate the given equation \( x^{p} + y^{q} = (x + y)^{p + q} \) with respect to \( x \) and find \( \frac{dy}{dx} \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ x^{p} + y^{q} = (x + y)^{p + q} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If x^(p)y^(q)=(x+y)^(p+q) , prove that (dy)/(dx)=(y)/(x)

x^(p)*y^(q) = (x+y)^(p+q) prove that dy/dx= y/x

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

Q.if y=x^(2)sin x, then (dy)/(dx) will be-

If x^py^q=(x+y)^(p+q) then the value of (d^(2)y)/(dx^(2)) is (where p,q in N ) (A) 0 (B) -1 (C) 1(D) None of these

If y = (1)/(1+x^( p-r) +x^(q-r)) +(1)/( 1+ x^(p-q) +x^(r-q) )+ (1) /( 1+x^(q-p) +x^(r-p)),then (dy)/(dx) =

If x^py^q=(x+y)^(p+q) , then dy/dx= (a) x/y (b) y/x (c) x/(x+y) (d) y/(y+x)

If x=a cos q,y=b sin q, then dy/dx=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -MHT CET CORER
  1. Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to ...

    Text Solution

    |

  2. If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the...

    Text Solution

    |

  3. If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is

    Text Solution

    |

  4. At the point x = 1 , then function f(x) = {{:(x^(3) - 1, 1lt x lt o...

    Text Solution

    |

  5. If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

    Text Solution

    |

  6. If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t, then the value of ...

    Text Solution

    |

  7. y=logtan(x/2)+sin^(-1)(cosx), then dy/dx is

    Text Solution

    |

  8. If x^(2) y^(5) = (x + y)^(7) , " then " (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  9. The equation of tangent to the curve given by x = 3 cos theta , y ...

    Text Solution

    |

  10. Differentiate (logx)^x with respect to logx .

    Text Solution

    |

  11. If x sec theta , y = tan theta , then the value of (d^(2) y)/(dx^(...

    Text Solution

    |

  12. If x=f(t) and y=g(t) , then write the value of (d^2y)/(dx^2) .

    Text Solution

    |

  13. Find (dy)/(dx) , " if x " = 2 cos theta - cos 2 theta and y = 2sin...

    Text Solution

    |

  14. find the derivative of e^(x) + e^(y) = e^(x +y)

    Text Solution

    |

  15. If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

    Text Solution

    |

  16. The derivative of cos^(3)x w.r.t. sin^(3)x is

    Text Solution

    |

  17. The derivative of log|x| is

    Text Solution

    |

  18. The function f(x)=e^(-|x|) is

    Text Solution

    |

  19. If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

    Text Solution

    |

  20. If y = log(cos x) sin x " then" (dy)/(dx) is equal to

    Text Solution

    |