Home
Class 12
MATHS
Find (dy)/(dx) , " if x " = 2 cos theta...

Find ` (dy)/(dx) , " if x " = 2 cos theta - cos 2 theta ` and
y = 2sin theta - sin 2 theta `.

A

`tan""(3 theta)/(2)`

B

`- tan"" (3 theta)/(2)`

C

`cot"" (3 theta )/(2)`

D

`- cot ""(3 theta )/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given \(x = 2 \cos \theta - \cos 2\theta\) and \(y = 2 \sin \theta - \sin 2\theta\), we will differentiate \(x\) and \(y\) with respect to \(\theta\) and then use the chain rule to find \(\frac{dy}{dx}\). ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = 2 \cos \theta - \cos 2\theta \] Using the differentiation rules: - The derivative of \(\cos \theta\) is \(-\sin \theta\). - The derivative of \(\cos 2\theta\) is \(-\sin 2\theta \cdot 2\) (using the chain rule). Thus, \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(2 \cos \theta) - \frac{d}{d\theta}(\cos 2\theta) \] \[ = 2(-\sin \theta) - (-\sin 2\theta \cdot 2) \] \[ = -2 \sin \theta + 2 \sin 2\theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = 2 \sin \theta - \sin 2\theta \] Using the differentiation rules: - The derivative of \(\sin \theta\) is \(\cos \theta\). - The derivative of \(\sin 2\theta\) is \(\cos 2\theta \cdot 2\) (using the chain rule). Thus, \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(2 \sin \theta) - \frac{d}{d\theta}(\sin 2\theta) \] \[ = 2 \cos \theta - (2 \cos 2\theta) \] \[ = 2 \cos \theta - 2 \cos 2\theta \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{2 \cos \theta - 2 \cos 2\theta}{-2 \sin \theta + 2 \sin 2\theta} \] ### Step 4: Simplify the expression We can factor out \(2\) from both the numerator and the denominator: \[ \frac{dy}{dx} = \frac{2(\cos \theta - \cos 2\theta)}{2(-\sin \theta + \sin 2\theta)} \] \[ = \frac{\cos \theta - \cos 2\theta}{-\sin \theta + \sin 2\theta} \] ### Step 5: Use trigonometric identities Using the identity for \(\cos A - \cos B\): \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] For \(\cos \theta - \cos 2\theta\): \[ = -2 \sin\left(\frac{\theta + 2\theta}{2}\right) \sin\left(\frac{\theta - 2\theta}{2}\right) \] \[ = -2 \sin\left(\frac{3\theta}{2}\right) \sin\left(-\frac{\theta}{2}\right) \] \[ = 2 \sin\left(\frac{3\theta}{2}\right) \sin\left(\frac{\theta}{2}\right) \] For \(-\sin \theta + \sin 2\theta\): \[ = \sin 2\theta - \sin \theta = 2 \cos\left(\frac{2\theta + \theta}{2}\right) \sin\left(\frac{2\theta - \theta}{2}\right) \] \[ = 2 \cos\left(\frac{3\theta}{2}\right) \sin\left(\frac{\theta}{2}\right) \] ### Final Result Thus, we have: \[ \frac{dy}{dx} = \frac{2 \sin\left(\frac{3\theta}{2}\right) \sin\left(\frac{\theta}{2}\right)}{2 \cos\left(\frac{3\theta}{2}\right) \sin\left(\frac{\theta}{2}\right)} \] \[ = \frac{\sin\left(\frac{3\theta}{2}\right)}{\cos\left(\frac{3\theta}{2}\right)} = \tan\left(\frac{3\theta}{2}\right) \] ### Conclusion Therefore, the final answer is: \[ \frac{dy}{dx} = \tan\left(\frac{3\theta}{2}\right) \]

To find \(\frac{dy}{dx}\) given \(x = 2 \cos \theta - \cos 2\theta\) and \(y = 2 \sin \theta - \sin 2\theta\), we will differentiate \(x\) and \(y\) with respect to \(\theta\) and then use the chain rule to find \(\frac{dy}{dx}\). ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = 2 \cos \theta - \cos 2\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

Find (dy)/(dx) if x=3 cos theta- 2cos^(3)theta,y=3 sin theta -2sin^(3) theta.

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -MHT CET CORER
  1. If x sec theta , y = tan theta , then the value of (d^(2) y)/(dx^(...

    Text Solution

    |

  2. If x=f(t) and y=g(t) , then write the value of (d^2y)/(dx^2) .

    Text Solution

    |

  3. Find (dy)/(dx) , " if x " = 2 cos theta - cos 2 theta and y = 2sin...

    Text Solution

    |

  4. find the derivative of e^(x) + e^(y) = e^(x +y)

    Text Solution

    |

  5. If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

    Text Solution

    |

  6. The derivative of cos^(3)x w.r.t. sin^(3)x is

    Text Solution

    |

  7. The derivative of log|x| is

    Text Solution

    |

  8. The function f(x)=e^(-|x|) is

    Text Solution

    |

  9. If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

    Text Solution

    |

  10. If y = log(cos x) sin x " then" (dy)/(dx) is equal to

    Text Solution

    |

  11. If y^(2) = ax^(2) + bx + c , where a,b,c, are constants , then y^...

    Text Solution

    |

  12. If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  13. If y = 5^(x) x^(5) , " then" (dy)/(dx) is

    Text Solution

    |

  14. If y = tan^(-1) ((a cos x - b sin x)/(b cos x + a sin x)) " then " (dy...

    Text Solution

    |

  15. (d)/(dx)[sec{cos^(-1) ((x)/(8))}] is equal to

    Text Solution

    |

  16. If f(x)=sqrt(1+cos^2(x^2)),t h e nf^(prime)((sqrt(pi))/2) is

    Text Solution

    |

  17. If y = a sin^(3) theta " and " x = a cos^(3) theta . " then at " th...

    Text Solution

    |

  18. If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ . . .oo))), then (dy)/(dx) is equa...

    Text Solution

    |

  19. The nth derivatiive of (x+1)^n is

    Text Solution

    |

  20. If y = a sin (5x + c) , then

    Text Solution

    |