Home
Class 11
MATHS
[" Let "f(x)" be a twice - differentiabl...

[" Let "f(x)" be a twice - differentiable function and "f''(0)=2." Th "],[lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

" Let "_(f(x)" be a twice differentiable function and "f''(0)=5*" If "lim_(x rarr0)(3f(x)-4f(3x)+f(9x))/(x^(2))=m," then "_(m-115)" is equal to ")

If f(x) is twice differentiable and f^('')(0) = 3 , then lim_(x rarr 0) (2f(x)-3f(2x)+f(4x))/x^(2) is

Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

Let f(x) be a strictly increasing and differentiable function,then lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0))

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

If f'(0)=3 then lim_(x rarr0)(x^(2))/(f(x^(2))-6f(4x^(2))+5f(7x^(2))=)

If f(x) is a differentiable function of x then lim_(h rarr0)(f(x+3h)-f(x-2h))/(h)=