Home
Class 11
MATHS
Statement-1 : If angles A, B, C of Del...

Statement-1 : If angles A, B, C of `DeltaABC` are acute,
then `cotA cotB cotCle(1)/(3sqrt(3)).`
Statement-2: If a, b, c are positive real numbers and `-ltmlt1`, then
`(a^(m)+b^(m)+c^(m))/(3)lt((a+b+c)/(3))^(m)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are positive real numbers such that a+b+c=1, then prove that (a)/(b+c)+(b)/(c+a)+(c)/(a+b)>=(3)/(2)

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If A,B,C are the angles of DeltaABC then cotA.cotB+cotB.cotC+cotC.cotA=

If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC = k, then

Statement-1: In an acute angled triangle minimum value of tan alpha + tanbeta + tan gamma is 3sqrt(3) . And Statement-2: If a,b,c are three positive real numbers then (a+b+c)/3 ge sqrt(abc) into in a triangleABC , tanA+ tanB + tanC= tanA. tanB.tanC

Statement-1: In an acute angled triangle minimum value of tan alpha + tanbeta + tan gamma is 3sqrt(3) . And Statement-2: If a,b,c are three positive real numbers then (a+b+c)/3 ge sqrt(abc) into in a triangleABC , tanA+ tanB + tanC= tanA. tanB.tanC

If a,b,c,d are positive real number such that a+b+c+d=2 , then M=(a+b)(c+d) satisfies the relation:

If a,b,c,d are positive real number with a+b+c+d=2, then M=(a+b)(c+d) satisfies the inequality