Home
Class 14
MATHS
lim(n rarr oo)(1)/(n^(2))sum(r=0)^(n-1)s...

lim_(n rarr oo)(1)/(n^(2))sum_(r=0)^(n-1)sqrt(n^(2)-r^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(sqrt(n^(2)-r^(2))) =

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

lim_(n rarr oo) (1-n^(2))/(sum n)=

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

lim_(n rarr oo) (1)/(n^(3)) sum_(r = 1)^(n) r^(2) is :

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))