Home
Class 11
MATHS
In any triangle A B C , prove that: acos...

In any triangle `A B C ,` prove that: `acos((B+C)/2)=(b+c)sinA/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle A B C , prove that: acos((B-C)/2)=(b+c)sin(A/2)

In any triangle A B C prove that: sin((B-C)/2)=((b-c)/a)cosA/2

In any triangle A B C , prove that following: sin((B-C)/2)=(b-c)/a cos (A/2)

For any triangle ABC, prove that sin((B-C)/2)=(b-c)/acos(A/2)

In any DeltaABC , prove that acos""((B-C)/2)=(b+c)sin""(A/2) .

In any triangle ABC, prove that : (a sin(B-C))/(b^2-c^2)= (b sin (C-A))/(c^2-a^2)= (c sin (A-B))/(a^2-b^2) .

In triangle ABC , prove that a^2sin(B-C)=(b^2-c^2)sinA .

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

For any triangle ABC, prove that (b+c)cos((B+C)/2)=acos((B-C)/2)

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))