Home
Class 12
MATHS
int(0)^(1)sin^(-1)((2x)/(1+x^(2)))dx=(pi...

int_(0)^(1)sin^(-1)((2x)/(1+x^(2)))dx=(pi)/(2)-log2

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

int_(0)^(1)((sin^(-1)x)/(x))dx=(pi)/(2)(log2)

int_(0)^(1)cot^(-1)(1-x+x^(2))dx=(1)(pi)/(2)-log2(2)(pi)/(2)+log2(3)pi-log2(4)pi+log2

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

int_(a=)^(oo)ln(x+(1)/(x))(dx)/(1+x^(2))dx=(pi)/(2)ln a then

int_(0)^(pi) (dx)/(1+2 sin^(2)x)=

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)