Home
Class 12
MATHS
The scalar triple product [(veca+vecb-ve...

The scalar triple product `[(veca+vecb-vecc,vecb+vecc-veca,vecc+veca-vecb)]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [(veca+vecb+vecc,veca+vecb, vecb +vecc)] equals

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

The vectors veca-vecb,vecb-vecc,vecc-veca are

veca.(vecbxxvecc) is called the scalar triple product of veca,vecb,vecc and is denoted by [veca vecb vecc]. If veca, vecb, vecc are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel. [veca+vecb vecb+vecc vecc+veca] is equal to (A) 2[veca vecb vecc] (B) 3[veca,vecb,vecc] (C) [veca,vecb,vecc] (D) 0

veca.(vecbxxvecc) is called the scalar triple product of veca,vecb,vecc and is denoted by [veca vecb vecc] . If veca,vecb,vecc are coplanar then [veca+vecb vecb+vecc vecc+veca ] = (A) 1 (B) -1 (C) 0 (D) none of these