Home
Class 12
MATHS
Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int...

Let `u=int_0^oo (dx)/(x^4+7x^2+1` and `v=int_0^x (x^2dx)/(x^4+7x^2+1)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then find the value of u+v

int_0^oo ((x^2+1)dx)/(x^4-x^2+1)

int_0^oo (dx)/((x^2+4)(x^2+9)

int_0^4 (2x-1) dx

Let I_1=int_0^1 (dx)/(1+x^(1/3)) and I_2=int_0^1 (dx)/(1+x^(1/4)) then 4I_1+3I_2=

int_0^4(x^2)/(x+1)dx=?

If P=int_0^oo(x^2)/(1+x^4)dx ; Q=int_0^oo(x dx)/(1+x^4)"and"R=int_0^oo(dx)/(1+x^4), then prove that :