Home
Class 12
MATHS
Prove that sin^(-1) cos (sin^(-1) x) + c...

Prove that `sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2), |x| le 1

prove that , sin ^(-1) cos sin ^(-1 )x+cos ^(-1) sin cos ^(-1) ""x=(pi)/(2)

Prove that pi/2 le sin ^(-1) x +2 cos^(-1) x lt (3 pi)/(2)

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2)

Prove that sin^(-1) x+cos^(-1) x=pi/2, x in [-1,1]

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1

Prove that sin ^(-1) x + cos^(-1) x=pi/2 , x in [-1,1]

prove that cot^(-1)[(cos x+sin x)/(cos x-sin x)]=(pi)/(4)-x