Home
Class 12
MATHS
" If "f^(H)(x+1)=1," then show that "(d^...

" If "f^(H)(x+1)=1," then show that "(d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If e^(y)(x+1)=1 . Show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y) (x+1) =1 show that (d^(2) y)/( dx^(2)) = ((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y

If e^(y)(x + 1) = 1 show that (d^2 y)/(dx^2) = ((dy)/(dx))^(2) .