Home
Class 12
MATHS
Using differential, find the approximate...

Using differential, find the approximate value of `f(2.01)` where `f(x)=4x^3+5x^2+2`

Text Solution

Verified by Experts

`f(x)=f(a)+(x-a)f'(a)`
`f(x)=4x^2+5x^2+2`
`f'(x)=12x^2+10x`
`f(2.01)=f(2)+(2.01-2)f'(2)`
`f'(x)=12*2^2+10*2`
`f'(x)=68`
`f(2.01)=54+0.01*68=54.68`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Using differentials, find the approximate value of f(2. 01), where f(x)=4x^3+5x^2+2.

Using differentials,find the approximate value of f(2.01), where f(x)=4x^(3)+5x^(2)+2

Find the approximate value of f(2.01), where f(x)= 4x^2+5x+2

Find the approximate value of f(2.01) ,where f(x)=4x^(2)+5x+2

Find the approximate value of f(2.01) where f(x) = 4x^2+ 5x +2 .

Find the approximate value of f(2.01) , where f(x)=4 x^2+5 x+2

Find the approximate value of f(2. 01) , where f(x)=4x^2+5x+2 .

Find the approximate value of f(2. 01) , where f(x)=4x^2+5x+2 .

Find the approximate value of f(2. 01) , where f(x)=4x^2+5x+2 .