Home
Class 11
MATHS
Evaluate sum(n=1)^(13)(i^n+i^(n+1)), whe...

Evaluate `sum_(n=1)^(13)(i^n+i^(n+1)),` where `n in Ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sum_(i=1)^13( i^n + i^(n+1) ) where, n in N

The value of sum_(n=1)^(13)(i^n+i^(n+1)), " where "i = sqrt(-1) is

The value of sum_(n= 1)^(13) (i^(n) + i^(n + 1)) , where i=sqrt(-1) is

Q.sum_(n=1)^(13)(i^(n)+i^(n+1))=(-1+i),n in N

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum sum_(n=1)^(13)(i^n+i^(n+1)) ,where i=sqrt(-1) equals