Home
Class 12
MATHS
If vec a , vec ba n d vec c are unit ve...

If ` vec a , vec ba n d vec c` are unit vectors satisfying `| vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9,` then `|2 vec a+5 vec b+5 vec c|` is.

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are unit vectors satisfying |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9 then |2vec a+5vec b+5vec c| is.

If vec a, vec b and vec c are unit vectors satisfying | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 9 then | 2vec a + 7vec b + 7vec c | =

If vec a , vec b , vec c are unit vector, prove that | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2lt=9.

If vec a,vec b,vec c are unit vector,prove that |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)<=9

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a, vec b, vec c are unit vectors satisfying the condition veca+ vec b+ vec c= 0 then show that vec a. vec b+ vec b.vec c+ vec c. vec a= -3//2 .

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

If vec(a), vec(b) " and " vec(c) are unit vectors satisfying abs(vec(a)-vec(b))^(2)+abs(vec(b)-vec(c))^(2)+abs(vec(c)-vec(a))^(2)=9, " then " abs(2vec(a)+5vec(b)+5vec(c)) is -

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]