Home
Class 11
MATHS
[" (A) "Rquad " (B) "R-(-1,1)quad " (C) ...

[" (A) "Rquad " (B) "R-(-1,1)quad " (C) "R-(-3,3)],[" If "f(x)=log((x^(2)-5x+6)/(x^(2)+x+1))+sqrt((1)/([x^(2)-1]))" (Where[.] is greatestin "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log((x^(2)-5x+6)/(x^(2)+x+1))+sqrt((1)/([x^(2)-1]))) (Where [.1 is greatest integer),Then domain of function f(x) is

f:R rarr R where f(x)=(x^(2)+3x+6)/(x^(2)+x+1), then f(x) is

The range of f: R to R ,f(x) = ((sqrt(( x^(2)+ 1 ))- 3x))/( sqrt( x^(2) +1)+x) is

f(x)=2x-tan^(-1)x-ln(x+sqrt(1+x^(2)));x in R then

The domain of f(x)=log|x|+(1)/(sqrt(|x|))+(1)/(log)|x| is R-A where A is set

The function f:A rarr R,f(x)=(1)/(sqrt(4x^(2)-1))+ln(x(x^(2)-1)) , f:A rarr R,f(x)=(1)/(sqrt(4x^(2)-1))+ln(x(x^(2)-1)) is (Here A is the largest possible domain of the given function

Show that f(x) = 2x+Cot^-1 x +log(sqrt(1+x^2)-x) is increasing in R.

Show that f(x)=2x+cot^(-1)x+log(sqrt(1+x^(2))-x) is increasing in R.

Show that f(x) = 2x + cot^-1 x + log(sqrt(1+x^2)-x) is increasing in R

Show that f(x)=2x+cot^(-1)x+log(sqrt(1+x^(2))-x) is increasing in R