Home
Class 12
MATHS
"If "y=(x)^(cosx)+(sinx)^(tanx)", prove ...

`"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.`

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y=x^(cos)+(cosx)^(x)", prove that "(dy)/(dx)=x^(cosx).{(cosx)/(x)-(sinx)logx}+(cosx)^(x)[(log cos x)-x tan x].

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

y=(tanx)^(logx)+(cosx)^(sinx)

If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].

If y=(1+sinx-cosx)/(1+sinx+cosx), " show that, " (dy)/(dx)=(1)/(1+cos x).

If y=x^(sinx)+(sinx)^(cosx) , then find (dy)/(dx) .

If y = tanx + sec x , prove that (d^2y)/(dx^2) = (cosx)/((1-sinx)^2)

If y=(sinx)^(cosx) + (cos x)^sinx , then find dy/dx .

y=(sinx)^(tanx)+(cosx)^(secx)