Home
Class 12
MATHS
lim[x->1] ([sum[k=1]^100x^k]-100])/(...

`lim_[x->1] ([sum_[k=1]^100x^k]-100])/(x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the limit: lim_(x->1)(sum _(k=1) ^100 x^k-100)/(x-1)

Evaluate lim_(x to 1) (sum_(k=1)^(100) x^(k) - 100)/(x-1).

Evaluate the limit: ("lim")_(x vec 1)(sum _(k=1) ^100 x^k-100)/(x-1)

Evaluate lim_(x to 1) sum_(k=1)^(100) x^(k) - 100)/(x-1).

Evaluate lim_(x to 1) sum_(k=1)^(100) x^(k) - 100)/(x-1).

Evaluate the limit: lim_(x rarr1)(sum_(k=1)^(oo0)x^(k)-100)/(x-1)

lim_ (x rarr1) ((sum_ (k = 1) ^ (200) x ^ (K)) - 200) / (x-1)

k=lim_(xtooo)[(sum_(k=1)^(1000)(x+k)^(m))/(x^(m)+10^(1000))] (mgt101) is -

The coefficient of x^(50) in the expansion sum_(k=0)^(100)""^(100)C_(k)( x-2)^(100-k)3^(k) is also equal to :