Home
Class 11
MATHS
" 6Domain of "f(x)=sqrt([x]-1+x^(2));" w...

" 6Domain of "f(x)=sqrt([x]-1+x^(2));" where [.] denotes the great "

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

Domain of f(x)=sqrt((x-1)/(x-2{x})), where {.}

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

Domain of f(x)=sqrt(2{x}^(2)-3{x}+1 (where {} denotes the fraction part),in [-1,1] is,

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is: