Home
Class 11
MATHS
(A) (-1,1) where [.] denotes the If doma...

(A) (-1,1) where [.] denotes the If domain of f(x) is [-1,2), then domain of f([x]-X“ +4) where function, is (A-17 (B) (-13,-1]+[X3,17]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the domain of f(x)is[-1,3], then the domain g(x)=f(x^(2)-2x) is

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

If domain of f(x) is (-oo,0) , then domain of f(6{x}^2-5(x)+ 1) is (where {.} represents fractional part function)

If the domain of y=f(x) is [-3,2] , then find the domain of g(x)=f([x]), where [] denotes the greatest integer function.

If domain of f(x) is (-prop, 0) then domain of f(6{x}^2- 5 {x} + 1) is (where {*} represetns fractional part function)

If domain of f(x) is (-oo,0], then domain of f(6{x}^(2)-5(x)+1) is (where {.} represents fractional part function)

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).