Home
Class 11
MATHS
There are m points on a straight line AB...

There are m points on a straight line AB & points on the line AC none of them being the DOKEA Thangles are formed with these points as vertices. When O Ais excluded A is included The ratio of number of triangles in the two cases

Promotional Banner

Similar Questions

Explore conceptually related problems

There are m points on a straight line AB & n points on the line AC none of them being the point A. Tri- angles are formed with these points as vertices, when A is excluded (ii) A is included. The ratio of number of triangles in the two cases is

There are 10 points on a straight line AB and 8 on another straight line AC, none of them being A. How many triangles can be formed with these points as vertices?

There are m points on the line AB and n points on the line AC ,excluding the point A. Triangles are formed joining these points

There are m points on the line AB and n points on the line AC, excluding the point A. Triangles are formed joining these points

The number of triangles that can be formed with 10 points as vertices n of them being collinear, is 110. Then n is

The number of triangles that can be formed with 10 points as vertices n of them being collinear, is 110. Then n is

Two parallel straight lines contains 5 points and 10 points respectively.How many triangles can be formed using these points as the vertices of the triangles?

There are ten points in a plane. Of these ten points, four points are in a straight line and with the exceptionof these four points, on three points are in the same straight line. Find i. the number of triangles formed, ii the number of straight lines formed iii the number of quadrilaterals formed, by joining these ten points.