Home
Class 12
MATHS
f(x)=(3-x^(3))^(1/3)...

f(x)=(3-x^(3))^(1/3)

Promotional Banner

Similar Questions

Explore conceptually related problems

For f:N rarr R f(x)=(x^(3)-11^(3))^(1//3) , the number of positive integral values f(x) can take is

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

Let f(x)=x^(3)-(1)/(x^3) , then f(x)+f((1)/(x)) is equal to :

If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) then (d)/(dx)(f(x)) is equal to

Find the absolute extrema of the following functions on the given closed interval. f(x)=6x^(4/3)-3x^(1/3),[-1,1]

If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) and phi(x)=cos^(-1)((1-x^(2))/(1+x^(2))) , then the value of lim_(x to a) (f(x)-f(a))/(phi(x)-phi(a))(0 lt a lt (1)/(2)) is -

If f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) and g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x rarr a)(f(x)-f(a))/(g(x)-g(a))

If f(x)=(1+x)(2+x^(2))^((1)/(2))(3+|x^(3)|)^((1)/(3)) then f'(-1) is

If f(x)=x^(3)-(1)/(x^(3)) show that f(x)+f((1)/(x))=0