Home
Class 12
MATHS
[" Find the vector equation of the plane...

[" Find the vector equation of the plane that "],[" contains the line "vec r=(hat i+hat j)+lambda(hat i+2hat j-hat k)],[" and the point "(-1,3,-4)" .Also find the length "],[" of the perpendicular drawn from the point "],[(2,1,4)" to the plane,thus obtained."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the vector equation of the plane that contains the line vec(r) = (hat(i) + hat(j) ) + lambda (hat(i) + 2 hat(j) - hat(k)) and the point (-1, 3,-4). Also , find the length of the perpendicular from the point (2,1,4) to the plane, thus botained.

Find the vector equation of the plane thatcontains the lines vec r=(hat i+hat j)+lambda(hat i+2hat j-hat k) and vec r=(hat i+hat j)+mu(-hat i+hat j-2hat k) Also find the length of perpendicular drawnfrom the point (2,1,4) to the plane thus obtained.

Find the vector equation of the plane passing through the intersection of the planes vec r*(hat i+hat j+hat k)=6 and vec r*(2hat i+3hat j+4hat k)=-5 and the point (1,1,1) .

Find the foot of the perpendicular drawn from the point 2hat i-hat j+5hat k to the line vec r=(11hat i-2hat j-8hat k)+lambda(10hat i-4hat j-11hat k) Also find the length of the perpendicular.

Find the foot of the perpendicular drawn from the point hat i+6 hat j+3 hat k to the line vec r= hat j+2 hat k+lambda( hat i+2 hat j+3 hat k)dot Also, find the length of the perpendicular.

Find the equation of a line passing through a point (2, -1, 3) and parallel to the line vec r=( hat i+ hat j)+lambda(2 hat i+ hat j-2 hat k)dot

Find the vector equation of plane that contains the lines vec(r)=(hat(i)+hat(j))+s(hat(i)+2hat(j)-hat(k)) and vec(r)=(hat(i)+hat(j))+t(-hat(i)+hat(j)-2hat(k))

Find the length of the perpendicular drawn from the point (5,4,-1) .to the line vec r=hat i+lambda(2hat i+9hat j+5hat k)

Find the vector equation of the plane through the intersection of the planes vec(r)*(hat(i)+hat(j)+hat(k))=6 and vec(r)*(2hat(i)+3hat(j)+4hat(k))=-5 and the point (1,1,1).