Home
Class 11
MATHS
Using the first principle, prove that d/...

Using the first principle, prove that `d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({f(x)}^2)

Using the first principle,prove that (d)/(dx)((1)/(f(x)))=(-f'(x))/([f(x)]^(2))

Using the first principle, prove that d/(dx)(1-x^2)=-2x

Using first principles, prove that (d)/( dx) ((1)/( f(x))) = (-f' (x))/( {f (x) }^2) .

Using first principles,prove that (d)/(dx){(1)/(f(x))}=-(f'(x))/({f(x)}^(2))

Using first principles,prove that (d)/(dx)[(1)/(f(x))]=-(f'(x))/((f(x))^(2))

Differentiate from first principles: 12. (x^2+1)/( x)

Differentiate from first principles: 8. x+ (1)/( x)

Differentiate using first principle cos(x^(2)+1)

Differentiate from first principles: 2. (x-1)^(2)