Home
Class 12
MATHS
If the components of vec(b) along and pe...

If the components of `vec(b)` along and perpendicular to `vec(a)` are `lambdavec(a ) and vec(b)-lambdavec(a)` respectively, what is `lambda` equal to ?

A

`(vec(a).vec(b))/(|vec(a)|)`

B

`(vec(a).vec(b))/(|vec(b)|)`

C

`(vec(a).vec(b))/(|vec(a)|^(2))`

D

`(vec(a).vec(b))/(|vec(b)|^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) given that the components of \( \vec{b} \) along and perpendicular to \( \vec{a} \) are \( \lambda \vec{a} \) and \( \vec{b} - \lambda \vec{a} \) respectively. ### Step-by-step Solution: 1. **Understanding the Components**: - The component of \( \vec{b} \) along \( \vec{a} \) is given by the projection formula: \[ \text{Projection of } \vec{b} \text{ on } \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a} \] - According to the problem, this projection is equal to \( \lambda \vec{a} \). 2. **Setting Up the Equation**: - From the projection formula, we can equate: \[ \lambda \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a} \] 3. **Dividing Both Sides by \( \vec{a} \)**: - Since \( \vec{a} \) is not the zero vector, we can divide both sides by \( \vec{a} \): \[ \lambda = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \] 4. **Conclusion**: - Thus, we find that: \[ \lambda = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \] ### Final Answer: \[ \lambda = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \]

To solve the problem, we need to find the value of \( \lambda \) given that the components of \( \vec{b} \) along and perpendicular to \( \vec{a} \) are \( \lambda \vec{a} \) and \( \vec{b} - \lambda \vec{a} \) respectively. ### Step-by-step Solution: 1. **Understanding the Components**: - The component of \( \vec{b} \) along \( \vec{a} \) is given by the projection formula: \[ \text{Projection of } \vec{b} \text{ on } \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

Writhe the component of vec b along vec a

Vector component of vector vec b perpendicular to vec a is

The value of lambda for two perpendicular vectors vec(A)=2vec(i)+lambdavec(j)+vec(k) and vec(B)=4vec(i)-2vec(j)-2vec(k) is :-

If vec(beta) is perpendicular to both vec(alpha) and vec(lambda) where vec(alpha)=hat(k) and vec(lambda)=2hat(i)+3 hat(j)+4 hat(k) , then what is vec(beta) equal to ?

If vec a+vec b is perpendicular to vec b and vec a+vec 2b is perpendicular to vec a then

If |vec(a)|=2, |vec(b)|=5 and |vec(a)xxvec(b)| = 8 , then what is vec(a). vec(b) equal to ?

If |vec(a)|=3, |vec(b)|+4 , then for what value of 1 is (vec(a)+lambdavec(b)) perpendicular to (vec(a)-lambdavec(b)) ?

Let A,B,C,D,E represent vertices of a regular pentagon ABCDE . Given the position vector of these vertices be vec a, vec a+vec b,vec b,lambdavec a and lambdavec b respectively. If the area of the pentagon ABCDE is k|vec a timesvec b| then k is equal to

The magnitude of the vectors vec(a) and vec(b) are equal and the angle between them is 60^(@) . If the vectors lambda vec(a)+vec(b) and vec(a)-lambda vec(b) are perpendicular to each other, then what is the value of lambda ?

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If vec(m),vec(n),vec(r) are three vectors, theta is the angle between ...

    Text Solution

    |

  2. If the vectors hat(i)-2 x hat(j)-3yhat(k) and hat(i)+3xhat(j)+2yhat(k)...

    Text Solution

    |

  3. If the components of vec(b) along and perpendicular to vec(a) are lamb...

    Text Solution

    |

  4. A force mhat(i) - 3hat(j) + hat(k) acts on a point and so the point mo...

    Text Solution

    |

  5. For any two vectors vec(a) and vec(b) consider the following statement...

    Text Solution

    |

  6. Two vector 2hat(i)+m hat(j)-3 n hat(k) and 5 hat(i) + 3 m hat(j)+ n ha...

    Text Solution

    |

  7. Two vectors vec(a) and vec(b) are non-zero and non-collinear. What is ...

    Text Solution

    |

  8. If vec(a) and vec(b) are position vectors of the points A and B respec...

    Text Solution

    |

  9. If |vec(a)|=3, |vec(b)|+4, then for what value of 1 is (vec(a)+lambdav...

    Text Solution

    |

  10. What is the magnitude of the moment of the couple consisting of the fo...

    Text Solution

    |

  11. Let vec(a)=2vec(j)-3vec(k),vec(b) = hat(j)+3hat(k) and vec(c)=3vec(i)+...

    Text Solution

    |

  12. Let vec(u)=hat(i)-hat(j), vec(v)=2hat(i)+5hat(j), vec(w)= 4 hat(i)+3ha...

    Text Solution

    |

  13. If vec(a) and vec(b) are unit vectors inclined at an angle of 30^(@) t...

    Text Solution

    |

  14. Which one of the following is correct ? If the vector vec(c) is normal...

    Text Solution

    |

  15. Which one of the following statements is not correct?

    Text Solution

    |

  16. If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c ...

    Text Solution

    |

  17. For any three non-zero vectors veca,vecb and vec c if |(vecaxxvecb). v...

    Text Solution

    |

  18. If vec(a)=vec(i)+2 hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+lambda hat...

    Text Solution

    |

  19. The vectors vec(AB)=vec(c), vec(BC)=vec(a), vec(CA)=vec(b), are the si...

    Text Solution

    |

  20. If vec(a) is a position vector of a point (1, -3) and A is another poi...

    Text Solution

    |