Home
Class 12
MATHS
If |vec(a)|=3, |vec(b)|+4, then for what...

If `|vec(a)|=3, |vec(b)|+4`, then for what value of 1 is `(vec(a)+lambdavec(b))` perpendicular to `(vec(a)-lambdavec(b))`?

A

`+-3/4`

B

`+-4/3`

C

`+-9/16`

D

`+-3/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that the vector \( \vec{a} + \lambda \vec{b} \) is perpendicular to the vector \( \vec{a} - \lambda \vec{b} \). ### Step-by-step Solution: 1. **Understanding Perpendicular Vectors**: Two vectors \( \vec{u} \) and \( \vec{v} \) are perpendicular if their dot product is zero: \[ \vec{u} \cdot \vec{v} = 0 \] In our case, we have: \[ (\vec{a} + \lambda \vec{b}) \cdot (\vec{a} - \lambda \vec{b}) = 0 \] 2. **Calculating the Dot Product**: We can expand the dot product: \[ (\vec{a} + \lambda \vec{b}) \cdot (\vec{a} - \lambda \vec{b}) = \vec{a} \cdot \vec{a} - \lambda \vec{a} \cdot \vec{b} + \lambda \vec{b} \cdot \vec{a} - \lambda^2 \vec{b} \cdot \vec{b} \] Since \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \), this simplifies to: \[ \vec{a} \cdot \vec{a} - \lambda^2 \vec{b} \cdot \vec{b} \] 3. **Substituting Magnitudes**: We know the magnitudes: \[ |\vec{a}| = 3 \quad \text{and} \quad |\vec{b}| = 4 \] Therefore: \[ \vec{a} \cdot \vec{a} = |\vec{a}|^2 = 3^2 = 9 \] \[ \vec{b} \cdot \vec{b} = |\vec{b}|^2 = 4^2 = 16 \] 4. **Setting Up the Equation**: Now we can substitute these values into our dot product equation: \[ 9 - \lambda^2 \cdot 16 = 0 \] 5. **Solving for \( \lambda^2 \)**: Rearranging gives: \[ 9 = 16\lambda^2 \] Dividing both sides by 16: \[ \lambda^2 = \frac{9}{16} \] 6. **Finding \( \lambda \)**: Taking the square root of both sides: \[ \lambda = \pm \frac{3}{4} \] ### Final Answer: Thus, the values of \( \lambda \) for which \( \vec{a} + \lambda \vec{b} \) is perpendicular to \( \vec{a} - \lambda \vec{b} \) are: \[ \lambda = \frac{3}{4} \quad \text{or} \quad \lambda = -\frac{3}{4} \]

To solve the problem, we need to find the value of \( \lambda \) such that the vector \( \vec{a} + \lambda \vec{b} \) is perpendicular to the vector \( \vec{a} - \lambda \vec{b} \). ### Step-by-step Solution: 1. **Understanding Perpendicular Vectors**: Two vectors \( \vec{u} \) and \( \vec{v} \) are perpendicular if their dot product is zero: \[ \vec{u} \cdot \vec{v} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If |vec a|=3,|vec b|=4 then a value of lambda for which vec a+lambdavec b is perpendicular to vec a-lambdavec b is : (9)/(16) (b) (3)/(4) (c) (3)/(2) (d) (4)/(3)

If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5 , then what is the value of |vec(a)+vec(b)|=?

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

If |vec(a)|=10 |vec(b)|=2 and vec(a).vec(b)=12 , then what is the value of |vec(a) xx vec(b)| ?

If |vec a|=|vec b|=|vec a+vec b|=1, then find the value of |vec a-vec b|

If |vec(a) | = 3, |vec(b)|= 4 and |vec(a)- vec(b)|=5 , then what si the value of |vec(a) + vec(b)| =?

If |vec a+vec b|=|vec a-vec b|, show that the vectors vec a and vec b are perpendicular to each other.

If |vec(a)+vec(b)|=|vec(a)-vec(b)| , prove that vec(a) and vec(b) are perpendicular.

If |vec a+vec b||=|vec a-vec b| then show that vec a and vec b are perpendicular to each other.

Let vec(a), vec(b), vec(c) be vectors of length 3, 4, 5 respectively. Let vec(a) be perpendicular to vec(b)+vec(c), vec(b) to vec(c)+vec(a) and vec(c) to vec(a)+vec(b) . Then |vec(a)+vec(b)+vec(c)| is :

NDA PREVIOUS YEARS-VECTORS -MATH
  1. Two vectors vec(a) and vec(b) are non-zero and non-collinear. What is ...

    Text Solution

    |

  2. If vec(a) and vec(b) are position vectors of the points A and B respec...

    Text Solution

    |

  3. If |vec(a)|=3, |vec(b)|+4, then for what value of 1 is (vec(a)+lambdav...

    Text Solution

    |

  4. What is the magnitude of the moment of the couple consisting of the fo...

    Text Solution

    |

  5. Let vec(a)=2vec(j)-3vec(k),vec(b) = hat(j)+3hat(k) and vec(c)=3vec(i)+...

    Text Solution

    |

  6. Let vec(u)=hat(i)-hat(j), vec(v)=2hat(i)+5hat(j), vec(w)= 4 hat(i)+3ha...

    Text Solution

    |

  7. If vec(a) and vec(b) are unit vectors inclined at an angle of 30^(@) t...

    Text Solution

    |

  8. Which one of the following is correct ? If the vector vec(c) is normal...

    Text Solution

    |

  9. Which one of the following statements is not correct?

    Text Solution

    |

  10. If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c ...

    Text Solution

    |

  11. For any three non-zero vectors veca,vecb and vec c if |(vecaxxvecb). v...

    Text Solution

    |

  12. If vec(a)=vec(i)+2 hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+lambda hat...

    Text Solution

    |

  13. The vectors vec(AB)=vec(c), vec(BC)=vec(a), vec(CA)=vec(b), are the si...

    Text Solution

    |

  14. If vec(a) is a position vector of a point (1, -3) and A is another poi...

    Text Solution

    |

  15. If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k), then ...

    Text Solution

    |

  16. If -> a is a nonzero vector of magnitude a and lambda a nonzero...

    Text Solution

    |

  17. Let vec(a) and vec(b) be the position vectors of A and B respectively....

    Text Solution

    |

  18. Consider the following If vec(a) and vec(b) are the vectors forming ...

    Text Solution

    |

  19. If vec(a) , vec(b), vec(c) are unit vectors such that vec(a) is perpen...

    Text Solution

    |

  20. What is the locus of the point (x, y) for which the vectors (hat(i)-xh...

    Text Solution

    |