Home
Class 12
MATHS
If vec(a)=vec(i)+2 hat(j)-3hat(k) and ve...

If `vec(a)=vec(i)+2 hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+lambda hat(k) and (vec(a)+vec(b))` is perpendicular to `vec(a)-vec(b)`, then what is the value of `lambda`?

A

`-2` only

B

`pm2`

C

3 only

D

`pm3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) given that \( \vec{a} + \vec{b} \) is perpendicular to \( \vec{a} - \vec{b} \). ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + 2\hat{j} - 3\hat{k} \] \[ \vec{b} = 3\hat{i} - \hat{j} + \lambda \hat{k} \] ### Step 2: Calculate \( \vec{a} + \vec{b} \) \[ \vec{a} + \vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) + (3\hat{i} - \hat{j} + \lambda \hat{k}) \] Combine the components: \[ = (1 + 3)\hat{i} + (2 - 1)\hat{j} + (-3 + \lambda)\hat{k} \] \[ = 4\hat{i} + 1\hat{j} + (\lambda - 3)\hat{k} \] ### Step 3: Calculate \( \vec{a} - \vec{b} \) \[ \vec{a} - \vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) - (3\hat{i} - \hat{j} + \lambda \hat{k}) \] Combine the components: \[ = (1 - 3)\hat{i} + (2 + 1)\hat{j} + (-3 - \lambda)\hat{k} \] \[ = -2\hat{i} + 3\hat{j} + (-3 - \lambda)\hat{k} \] ### Step 4: Set up the dot product condition Since \( \vec{a} + \vec{b} \) is perpendicular to \( \vec{a} - \vec{b} \), we have: \[ (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0 \] Substituting the vectors: \[ (4\hat{i} + 1\hat{j} + (\lambda - 3)\hat{k}) \cdot (-2\hat{i} + 3\hat{j} + (-3 - \lambda)\hat{k}) = 0 \] ### Step 5: Calculate the dot product Calculating the dot product: \[ = 4 \cdot (-2) + 1 \cdot 3 + (\lambda - 3)(-3 - \lambda) \] \[ = -8 + 3 + (-3\lambda + 9 + \lambda^2 - 3\lambda) \] \[ = -5 + \lambda^2 - 6\lambda + 9 = 0 \] \[ \lambda^2 - 6\lambda + 4 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -6, c = 4 \): \[ \lambda = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} \] \[ = \frac{6 \pm \sqrt{36 - 16}}{2} \] \[ = \frac{6 \pm \sqrt{20}}{2} \] \[ = \frac{6 \pm 2\sqrt{5}}{2} \] \[ = 3 \pm \sqrt{5} \] ### Final Answer Thus, the values of \( \lambda \) are: \[ \lambda = 3 + \sqrt{5} \quad \text{or} \quad \lambda = 3 - \sqrt{5} \]

To solve the problem, we need to find the value of \( \lambda \) given that \( \vec{a} + \vec{b} \) is perpendicular to \( \vec{a} - \vec{b} \). ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + 2\hat{j} - 3\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

If vec(a)=(2hat(i)+4hat(j)-k^(2)) and vec(b)=(3hat(i)-2hat(j)+lambda hat(k)) be such that vec(a) _|_ vec(b) then lambda= ?

If vec(a) = 2 hat(i) + 3 hat (j) + 4 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - lambda hat(k) are perpendicular, then what is the value of lambda ?

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vectors vec(a) = 3 hat(i) + hat(j) - 2 hat(k) and vec(b) = hat(i) + lambda(j) - 3 hat (k) are perpendicular to each other , find the value of lambda .

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c ...

    Text Solution

    |

  2. For any three non-zero vectors veca,vecb and vec c if |(vecaxxvecb). v...

    Text Solution

    |

  3. If vec(a)=vec(i)+2 hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+lambda hat...

    Text Solution

    |

  4. The vectors vec(AB)=vec(c), vec(BC)=vec(a), vec(CA)=vec(b), are the si...

    Text Solution

    |

  5. If vec(a) is a position vector of a point (1, -3) and A is another poi...

    Text Solution

    |

  6. If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k), then ...

    Text Solution

    |

  7. If -> a is a nonzero vector of magnitude a and lambda a nonzero...

    Text Solution

    |

  8. Let vec(a) and vec(b) be the position vectors of A and B respectively....

    Text Solution

    |

  9. Consider the following If vec(a) and vec(b) are the vectors forming ...

    Text Solution

    |

  10. If vec(a) , vec(b), vec(c) are unit vectors such that vec(a) is perpen...

    Text Solution

    |

  11. What is the locus of the point (x, y) for which the vectors (hat(i)-xh...

    Text Solution

    |

  12. The number of vectors of unit length perpendicular to vectors vec ...

    Text Solution

    |

  13. What is the area of the rectangle of which vec(r)=ahat(i)+b hat(j) is ...

    Text Solution

    |

  14. If (3 vec(a)-vec(b))xx(vec(a) + 3 vec(b)) =k vec(a)xxvec(b) then what ...

    Text Solution

    |

  15. What is the value of lambda if the triangle whose vertices are hat(i),...

    Text Solution

    |

  16. The scalar triple product (vec(A)xxvec(B)).vec(C) of three vectors vec...

    Text Solution

    |

  17. If vec a\ a n d\ vec b are unit vectors then write the value of | ve...

    Text Solution

    |

  18. Two forces are equal to 2vec(OA) and 3vec(BO), their resultant being l...

    Text Solution

    |

  19. If vec(a) and vec(b) are two unit vectors inclined at an angle 60^(@) ...

    Text Solution

    |

  20. Let vec(a)=(1, -2, 3) and vec(b)=(3, 1, 2) be two vectors and vec(c) ...

    Text Solution

    |