Home
Class 12
MATHS
The vectors vec(AB)=vec(c), vec(BC)=vec(...

The vectors `vec(AB)=vec(c), vec(BC)=vec(a), vec(CA)=vec(b)`, are the sides of a triangles ABC. Which of the following vectors represent (s) the median `vec(AD)`?
1.` (1)/(2) vec(a)+vec(c)`
2. `-(1)/(2)vec(b)+(1)/(2)vec(c)`
3. `vec(1)/(2) vec(a)+vec(b)`
Select the correct answer using the code given below

A

`1 and 2`

B

`1 and 3`

C

`1 only`

D

`2 only`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector representing the median \( \vec{AD} \) in triangle \( ABC \) with given vectors \( \vec{AB} = \vec{c} \), \( \vec{BC} = \vec{a} \), and \( \vec{CA} = \vec{b} \), we can follow these steps: ### Step 1: Understand the Position of Points In triangle \( ABC \): - Point \( A \) is at the top. - Point \( B \) is at the bottom left. - Point \( C \) is at the bottom right. ### Step 2: Identify the Midpoint Since \( D \) is the midpoint of \( BC \), we can express the position vector of \( D \) as: \[ \vec{D} = \frac{1}{2} (\vec{B} + \vec{C}) \] Using the vector representation, we can express \( \vec{B} \) and \( \vec{C} \) in terms of \( \vec{A} \): - \( \vec{B} = \vec{A} + \vec{c} \) - \( \vec{C} = \vec{A} + \vec{b} \) ### Step 3: Substitute for \( \vec{B} \) and \( \vec{C} \) Now substituting for \( \vec{B} \) and \( \vec{C} \) in the equation for \( \vec{D} \): \[ \vec{D} = \frac{1}{2} \left( (\vec{A} + \vec{c}) + (\vec{A} + \vec{b}) \right) \] This simplifies to: \[ \vec{D} = \frac{1}{2} (2\vec{A} + \vec{b} + \vec{c}) = \vec{A} + \frac{1}{2} (\vec{b} + \vec{c}) \] ### Step 4: Find \( \vec{AD} \) Now, we can find the vector \( \vec{AD} \): \[ \vec{AD} = \vec{D} - \vec{A} \] Substituting \( \vec{D} \): \[ \vec{AD} = \left( \vec{A} + \frac{1}{2} (\vec{b} + \vec{c}) \right) - \vec{A} = \frac{1}{2} (\vec{b} + \vec{c}) \] ### Step 5: Compare with Given Options Now we need to compare \( \vec{AD} = \frac{1}{2} (\vec{b} + \vec{c}) \) with the given options: 1. \( \frac{1}{2} \vec{a} + \vec{c} \) 2. \( -\frac{1}{2} \vec{b} + \frac{1}{2} \vec{c} \) 3. \( \frac{1}{2} \vec{a} + \vec{b} \) None of the options directly match \( \frac{1}{2} (\vec{b} + \vec{c}) \). However, we can manipulate the second option: \[ -\frac{1}{2} \vec{b} + \frac{1}{2} \vec{c} = \frac{1}{2} \vec{c} - \frac{1}{2} \vec{b} \] This can be rewritten as: \[ \frac{1}{2} (\vec{c} - \vec{b}) \] This does not match either. ### Conclusion After analyzing the options, we find that none of the provided options correctly represent the median \( \vec{AD} \). Thus, the correct answer is that none of the options are correct.

To find the vector representing the median \( \vec{AD} \) in triangle \( ABC \) with given vectors \( \vec{AB} = \vec{c} \), \( \vec{BC} = \vec{a} \), and \( \vec{CA} = \vec{b} \), we can follow these steps: ### Step 1: Understand the Position of Points In triangle \( ABC \): - Point \( A \) is at the top. - Point \( B \) is at the bottom left. - Point \( C \) is at the bottom right. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)- vec(d)) xx (vec(b) - vec(c ))= vec(0) 2. (vec(a) xx vec(b))xx (vec(c ) xx vec(d))= vec(0) Select the correct answer using the codes given below

The vectors vec(a), vec(b), vec(c) and vec(d) are such that vec(a)xx vec(b) = vec(c) xx d and vec(a) xx vec(c)= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)-vec(d))xx (vec(b)-vec(c))=vec(0) 2. (vec(a)xx vec(b))xx (vec(c)xx vec(d))=vec(0) Select the correct answer using the code given below :

If vec(a) + vec(b)+vec(c)=vec(0) , then which of the following is/are correct? 1. vec(a), vec(b), vec(c) are coplanar. 2. vec(a)xx vec(b) = vec(b) xx vec(c) = vec(c) xx vec(a) Select the correct answer using the code given below.

Consider the following inequalities in respect of vector vec(a) and vec(b) 1. |vec(a) + vec(b)| le |vec(a)| + |vec(b)| 2. |vec(a) - vec(b)| ge |vec(a)|- |vec(b)| Which of the above is/are correct?

Consider the following inequalities in respect of vectors vec(a) and vec(b) : 1. |vec(a)+vec(b)| £|vec(a)|+|vec(b)| 2. |vec(a)-vec(b)|3|vec(a)|-|vec(b)| Which of the above is/are correct ?

Let three vectors vec(a), vec(b) and vec(c ) be such that vec(a) xx vec(b) = vec(c), vec(b) xx vec(c) = vec(a) and |vec(a)| = 2 . Then which one of the following is not true ?

Show that the points whose position vectors are vec(a) + 2vec(b) + 5vec(c), 3vec(a) + 2vec(b) + vec(c), 2vec(a) + 2vec(b) + 3vec(c) are colliner.

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

NDA PREVIOUS YEARS-VECTORS -MATH
  1. For any three non-zero vectors veca,vecb and vec c if |(vecaxxvecb). v...

    Text Solution

    |

  2. If vec(a)=vec(i)+2 hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+lambda hat...

    Text Solution

    |

  3. The vectors vec(AB)=vec(c), vec(BC)=vec(a), vec(CA)=vec(b), are the si...

    Text Solution

    |

  4. If vec(a) is a position vector of a point (1, -3) and A is another poi...

    Text Solution

    |

  5. If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k), then ...

    Text Solution

    |

  6. If -> a is a nonzero vector of magnitude a and lambda a nonzero...

    Text Solution

    |

  7. Let vec(a) and vec(b) be the position vectors of A and B respectively....

    Text Solution

    |

  8. Consider the following If vec(a) and vec(b) are the vectors forming ...

    Text Solution

    |

  9. If vec(a) , vec(b), vec(c) are unit vectors such that vec(a) is perpen...

    Text Solution

    |

  10. What is the locus of the point (x, y) for which the vectors (hat(i)-xh...

    Text Solution

    |

  11. The number of vectors of unit length perpendicular to vectors vec ...

    Text Solution

    |

  12. What is the area of the rectangle of which vec(r)=ahat(i)+b hat(j) is ...

    Text Solution

    |

  13. If (3 vec(a)-vec(b))xx(vec(a) + 3 vec(b)) =k vec(a)xxvec(b) then what ...

    Text Solution

    |

  14. What is the value of lambda if the triangle whose vertices are hat(i),...

    Text Solution

    |

  15. The scalar triple product (vec(A)xxvec(B)).vec(C) of three vectors vec...

    Text Solution

    |

  16. If vec a\ a n d\ vec b are unit vectors then write the value of | ve...

    Text Solution

    |

  17. Two forces are equal to 2vec(OA) and 3vec(BO), their resultant being l...

    Text Solution

    |

  18. If vec(a) and vec(b) are two unit vectors inclined at an angle 60^(@) ...

    Text Solution

    |

  19. Let vec(a)=(1, -2, 3) and vec(b)=(3, 1, 2) be two vectors and vec(c) ...

    Text Solution

    |

  20. If vec(r(1))=lambda vec(i)+2hat(j)+hat(k), vec(r(2))=hat(i)+(2-lambda)...

    Text Solution

    |