Home
Class 12
MATHS
If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)...

If `vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k)`, then what is `(vec(a)+vec(b))xx(vec(a)-vec(b))` equal to ?

A

`2(vec(a)xxvec(b))`

B

`-2(vec(a)xxvec(b))`

C

`(vec(a)xxvec(b))`

D

`-(vec(a)xxvec(b))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\) where \(\vec{a} = 2\hat{i} - 3\hat{j} - \hat{k}\) and \(\vec{b} = \hat{i} + 4\hat{j} - 2\hat{k}\). ### Step 1: Calculate \(\vec{a} + \vec{b}\) \[ \vec{a} + \vec{b} = (2\hat{i} - 3\hat{j} - \hat{k}) + (\hat{i} + 4\hat{j} - 2\hat{k}) \] Combining the components: \[ = (2 + 1)\hat{i} + (-3 + 4)\hat{j} + (-1 - 2)\hat{k} \] \[ = 3\hat{i} + 1\hat{j} - 3\hat{k} \] ### Step 2: Calculate \(\vec{a} - \vec{b}\) \[ \vec{a} - \vec{b} = (2\hat{i} - 3\hat{j} - \hat{k}) - (\hat{i} + 4\hat{j} - 2\hat{k}) \] Combining the components: \[ = (2 - 1)\hat{i} + (-3 - 4)\hat{j} + (-1 + 2)\hat{k} \] \[ = 1\hat{i} - 7\hat{j} + 1\hat{k} \] ### Step 3: Calculate \((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\) Now we need to calculate the cross product: \[ (3\hat{i} + 1\hat{j} - 3\hat{k}) \times (1\hat{i} - 7\hat{j} + 1\hat{k}) \] Using the determinant method for cross products: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -3 \\ 1 & -7 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & -3 \\ -7 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1 \\ 1 & -7 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 1 & -3 \\ -7 & 1 \end{vmatrix} = (1)(1) - (-3)(-7) = 1 - 21 = -20\) 2. \(\begin{vmatrix} 3 & -3 \\ 1 & 1 \end{vmatrix} = (3)(1) - (-3)(1) = 3 + 3 = 6\) 3. \(\begin{vmatrix} 3 & 1 \\ 1 & -7 \end{vmatrix} = (3)(-7) - (1)(1) = -21 - 1 = -22\) Putting it all together: \[ = -20\hat{i} - 6\hat{j} - 22\hat{k} \] ### Final Result Thus, the result of \((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\) is: \[ -20\hat{i} - 6\hat{j} - 22\hat{k} \]

To solve the problem, we need to calculate \((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\) where \(\vec{a} = 2\hat{i} - 3\hat{j} - \hat{k}\) and \(\vec{b} = \hat{i} + 4\hat{j} - 2\hat{k}\). ### Step 1: Calculate \(\vec{a} + \vec{b}\) \[ \vec{a} + \vec{b} = (2\hat{i} - 3\hat{j} - \hat{k}) + (\hat{i} + 4\hat{j} - 2\hat{k}) \] Combining the components: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If vec(a)= 2 hat(i) - 3hat(j) - hat(k), vec(b) = hat(i) +4hat(j) -2 hat(k) , then what is (vec(a) xx vec(b)) xx (vec(a)- vec(b)) is equal to ?

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

If vec(a)=2hat(i)-3hat(j)-hat(k) and vec(b)=hat(i)+4hat(j)-2hat(k) , then check whether vec(a)xx vec(b)=vec(b)xx vec(a) .

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

NDA PREVIOUS YEARS-VECTORS -MATH
  1. The vectors vec(AB)=vec(c), vec(BC)=vec(a), vec(CA)=vec(b), are the si...

    Text Solution

    |

  2. If vec(a) is a position vector of a point (1, -3) and A is another poi...

    Text Solution

    |

  3. If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k), then ...

    Text Solution

    |

  4. If -> a is a nonzero vector of magnitude a and lambda a nonzero...

    Text Solution

    |

  5. Let vec(a) and vec(b) be the position vectors of A and B respectively....

    Text Solution

    |

  6. Consider the following If vec(a) and vec(b) are the vectors forming ...

    Text Solution

    |

  7. If vec(a) , vec(b), vec(c) are unit vectors such that vec(a) is perpen...

    Text Solution

    |

  8. What is the locus of the point (x, y) for which the vectors (hat(i)-xh...

    Text Solution

    |

  9. The number of vectors of unit length perpendicular to vectors vec ...

    Text Solution

    |

  10. What is the area of the rectangle of which vec(r)=ahat(i)+b hat(j) is ...

    Text Solution

    |

  11. If (3 vec(a)-vec(b))xx(vec(a) + 3 vec(b)) =k vec(a)xxvec(b) then what ...

    Text Solution

    |

  12. What is the value of lambda if the triangle whose vertices are hat(i),...

    Text Solution

    |

  13. The scalar triple product (vec(A)xxvec(B)).vec(C) of three vectors vec...

    Text Solution

    |

  14. If vec a\ a n d\ vec b are unit vectors then write the value of | ve...

    Text Solution

    |

  15. Two forces are equal to 2vec(OA) and 3vec(BO), their resultant being l...

    Text Solution

    |

  16. If vec(a) and vec(b) are two unit vectors inclined at an angle 60^(@) ...

    Text Solution

    |

  17. Let vec(a)=(1, -2, 3) and vec(b)=(3, 1, 2) be two vectors and vec(c) ...

    Text Solution

    |

  18. If vec(r(1))=lambda vec(i)+2hat(j)+hat(k), vec(r(2))=hat(i)+(2-lambda)...

    Text Solution

    |

  19. If P, Q, R are the mid-points of the sides AB, BC and CA respectively ...

    Text Solution

    |

  20. What is the length of the vector (1, 1) ?

    Text Solution

    |