Home
Class 12
MATHS
If (3 vec(a)-vec(b))xx(vec(a) + 3 vec(b)...

If `(3 vec(a)-vec(b))xx(vec(a) + 3 vec(b)) =k vec(a)xxvec(b)` then what is the value of `k`?

A

`10`

B

`5`

C

`8`

D

`-8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (3 \vec{a} - \vec{b}) \times (\vec{a} + 3 \vec{b}) = k \vec{a} \times \vec{b} \), we will follow these steps: ### Step 1: Expand the Left-Hand Side (LHS) We start with the expression on the left-hand side: \[ \text{LHS} = (3 \vec{a} - \vec{b}) \times (\vec{a} + 3 \vec{b}) \] Using the distributive property of the cross product, we can expand this: \[ \text{LHS} = (3 \vec{a}) \times \vec{a} + (3 \vec{a}) \times (3 \vec{b}) - \vec{b} \times \vec{a} - \vec{b} \times (3 \vec{b}) \] ### Step 2: Simplify Each Term Now we simplify each term: 1. \( (3 \vec{a}) \times \vec{a} = 0 \) (because the cross product of any vector with itself is zero). 2. \( (3 \vec{a}) \times (3 \vec{b}) = 9 (\vec{a} \times \vec{b}) \). 3. \( -\vec{b} \times \vec{a} = -1 (\vec{a} \times \vec{b}) \) (using the property \( \vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}) \)). 4. \( -\vec{b} \times (3 \vec{b}) = 0 \) (again, the cross product of a vector with itself is zero). Putting it all together: \[ \text{LHS} = 0 + 9 (\vec{a} \times \vec{b}) - (\vec{a} \times \vec{b}) + 0 \] \[ \text{LHS} = 8 (\vec{a} \times \vec{b}) \] ### Step 3: Set LHS Equal to RHS Now we set the left-hand side equal to the right-hand side: \[ 8 (\vec{a} \times \vec{b}) = k (\vec{a} \times \vec{b}) \] ### Step 4: Solve for \( k \) Since \( \vec{a} \times \vec{b} \) is not zero (assuming \( \vec{a} \) and \( \vec{b} \) are not parallel), we can divide both sides by \( \vec{a} \times \vec{b} \): \[ k = 8 \] ### Final Answer Thus, the value of \( k \) is \( \boxed{8} \). ---

To solve the equation \( (3 \vec{a} - \vec{b}) \times (\vec{a} + 3 \vec{b}) = k \vec{a} \times \vec{b} \), we will follow these steps: ### Step 1: Expand the Left-Hand Side (LHS) We start with the expression on the left-hand side: \[ \text{LHS} = (3 \vec{a} - \vec{b}) \times (\vec{a} + 3 \vec{b}) \] Using the distributive property of the cross product, we can expand this: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If (3 vec(a) - vec(b)) xx (vec(a) + 3 vec(b))= k vec(a) xx vec(b) , then what is the value of k?

Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)]) . What is the value of (vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r) ?

Show that (vec a-vec b)xx(vec a+vec b)=2(vec a xxvec b)

If quad vec a+2vec b+3vec c=vec 0 and vec a xxvec b+vec b xxvec c+vec c xxvec a=lambda(vec b xxvec c) then what is the value of lambda?

If |vec(c)|=10, |vec(b)|=2 and vec(a)*vec(b)=12 , then what is the value of |vec(a)xxvec(b)| ?

Let vec(a)= hat(i) +hat(j)+2hat(k) and vec(b)= -hat(i) +2hat(j) +3hat(k) . Then the vector product (vec(a) +vec(b)) xx ((vec(a) xx ((vec(a)-vec(b)) xx vec(b))) xx vec(b)) is equal to

Given |vec a|=|vec b|=1and|vec a+vec b|=sqrt(3). If vec c is a vector such that vec c-vec a-2vec b=3(vec a xxvec b), then find the value of vec cvec b

(vec a xxvec b)^(2)+(vec a*vec b)^(2)=144 and |vec a|=4 then find the value of |vec b|

If |vec(a)|=2 and |vec(b)|=3 , then |vec(a)xxvec(b)|^(2)+|vec(a).vec(b)|^(2) is equal to

NDA PREVIOUS YEARS-VECTORS -MATH
  1. The number of vectors of unit length perpendicular to vectors vec ...

    Text Solution

    |

  2. What is the area of the rectangle of which vec(r)=ahat(i)+b hat(j) is ...

    Text Solution

    |

  3. If (3 vec(a)-vec(b))xx(vec(a) + 3 vec(b)) =k vec(a)xxvec(b) then what ...

    Text Solution

    |

  4. What is the value of lambda if the triangle whose vertices are hat(i),...

    Text Solution

    |

  5. The scalar triple product (vec(A)xxvec(B)).vec(C) of three vectors vec...

    Text Solution

    |

  6. If vec a\ a n d\ vec b are unit vectors then write the value of | ve...

    Text Solution

    |

  7. Two forces are equal to 2vec(OA) and 3vec(BO), their resultant being l...

    Text Solution

    |

  8. If vec(a) and vec(b) are two unit vectors inclined at an angle 60^(@) ...

    Text Solution

    |

  9. Let vec(a)=(1, -2, 3) and vec(b)=(3, 1, 2) be two vectors and vec(c) ...

    Text Solution

    |

  10. If vec(r(1))=lambda vec(i)+2hat(j)+hat(k), vec(r(2))=hat(i)+(2-lambda)...

    Text Solution

    |

  11. If P, Q, R are the mid-points of the sides AB, BC and CA respectively ...

    Text Solution

    |

  12. What is the length of the vector (1, 1) ?

    Text Solution

    |

  13. Which one of the following vectors of magnitude sqrt(51) makes equal a...

    Text Solution

    |

  14. If |vec(a)|=2, |vec(b)|=5 and |vec(a)xxvec(b)|, then what is vec(a). v...

    Text Solution

    |

  15. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, then which one of the following is...

    Text Solution

    |

  16. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  17. Let vec(a), vec(b), vec(c) be the position vectors of points A, B, C r...

    Text Solution

    |

  18. If vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k) and vec(c)...

    Text Solution

    |

  19. The following item consists of two statements, one labelled the Assert...

    Text Solution

    |

  20. If hat(a) and hat(b) are the unit vectors along vec(a) and vec(b) resp...

    Text Solution

    |