Home
Class 12
MATHS
If vec(r(1))=lambda vec(i)+2hat(j)+hat(k...

If `vec(r_(1))=lambda vec(i)+2hat(j)+hat(k), vec(r_(2))=hat(i)+(2-lambda)hat(j)+2hat(k)` are such that `|vec(r_(1))| gt |vec(r_(2))|`, then `lambda` satisfies which one of the following?

A

`lambda=0 ` only

B

`lambda=1`

C

`lambda lt 1`

D

`lambda lt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \lambda \) such that the magnitude of vector \( \vec{r_1} \) is greater than the magnitude of vector \( \vec{r_2} \). ### Step-by-step Solution: 1. **Write the vectors**: - Given \( \vec{r_1} = \lambda \hat{i} + 2 \hat{j} + \hat{k} \) - Given \( \vec{r_2} = \hat{i} + (2 - \lambda) \hat{j} + 2 \hat{k} \) 2. **Calculate the magnitudes**: - The magnitude of \( \vec{r_1} \) is calculated as: \[ |\vec{r_1}| = \sqrt{\lambda^2 + 2^2 + 1^2} = \sqrt{\lambda^2 + 4 + 1} = \sqrt{\lambda^2 + 5} \] - The magnitude of \( \vec{r_2} \) is calculated as: \[ |\vec{r_2}| = \sqrt{1^2 + (2 - \lambda)^2 + 2^2} = \sqrt{1 + (2 - \lambda)^2 + 4} \] Expanding \( (2 - \lambda)^2 \): \[ (2 - \lambda)^2 = 4 - 4\lambda + \lambda^2 \] Therefore, \[ |\vec{r_2}| = \sqrt{1 + 4 - 4\lambda + \lambda^2 + 4} = \sqrt{\lambda^2 - 4\lambda + 9} \] 3. **Set up the inequality**: - We need to solve the inequality: \[ |\vec{r_1}| > |\vec{r_2}| \] This translates to: \[ \sqrt{\lambda^2 + 5} > \sqrt{\lambda^2 - 4\lambda + 9} \] 4. **Square both sides**: - Squaring both sides (since both sides are positive): \[ \lambda^2 + 5 > \lambda^2 - 4\lambda + 9 \] 5. **Simplify the inequality**: - Cancel \( \lambda^2 \) from both sides: \[ 5 > -4\lambda + 9 \] - Rearranging gives: \[ 4\lambda > 9 - 5 \] \[ 4\lambda > 4 \] - Dividing by 4: \[ \lambda > 1 \] ### Conclusion: Thus, the value of \( \lambda \) satisfies the condition \( \lambda > 1 \).

To solve the problem, we need to find the values of \( \lambda \) such that the magnitude of vector \( \vec{r_1} \) is greater than the magnitude of vector \( \vec{r_2} \). ### Step-by-step Solution: 1. **Write the vectors**: - Given \( \vec{r_1} = \lambda \hat{i} + 2 \hat{j} + \hat{k} \) - Given \( \vec{r_2} = \hat{i} + (2 - \lambda) \hat{j} + 2 \hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If vec(r )_(1)=lamda hat(i) + 2hat(j) + hat(k). vec(r )_(2)= hat(i) + (2 - lamda) hat(j) +2hat(k) are such that |vec(r )_(1)| gt |vec(r )_(2)| then lamda satisfies which one of the following?

If vec(a)=(2hat(i)+4hat(j)-k^(2)) and vec(b)=(3hat(i)-2hat(j)+lambda hat(k)) be such that vec(a) _|_ vec(b) then lambda= ?

If vec(a)=(2hat(i)+6hat(j)+27hat(k)) and vec(b)=(hat(i)+lambda(j)+mu hat(k)) are such that vec(a)xxvec(b)=vec(0) then find the values of lambda and mu .

If vec(a) = 2 hat(i) + 2 hat(j) + hat(k) , vec(b) = - hat(i) + hat(j) + 2 hat(k) and vec ( c) = 3 hat(i) + hat(j) such that vec(a) + lambda hat (b) is perpendicular to vec( c) , find lambda .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

If vec(a) = 2 hat(i) + 3 hat (j) + 4 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - lambda hat(k) are perpendicular, then what is the value of lambda ?

It is given that the vectors vec(a)=(2hat(i)-2hat(k)), vec(b)=hat(i)+(lambda +1)hat(j) and vec(c)=(4hat(j)+2hat(k)) are coplanar. Then, the value of lambda is

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If vec(a) and vec(b) are two unit vectors inclined at an angle 60^(@) ...

    Text Solution

    |

  2. Let vec(a)=(1, -2, 3) and vec(b)=(3, 1, 2) be two vectors and vec(c) ...

    Text Solution

    |

  3. If vec(r(1))=lambda vec(i)+2hat(j)+hat(k), vec(r(2))=hat(i)+(2-lambda)...

    Text Solution

    |

  4. If P, Q, R are the mid-points of the sides AB, BC and CA respectively ...

    Text Solution

    |

  5. What is the length of the vector (1, 1) ?

    Text Solution

    |

  6. Which one of the following vectors of magnitude sqrt(51) makes equal a...

    Text Solution

    |

  7. If |vec(a)|=2, |vec(b)|=5 and |vec(a)xxvec(b)|, then what is vec(a). v...

    Text Solution

    |

  8. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, then which one of the following is...

    Text Solution

    |

  9. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  10. Let vec(a), vec(b), vec(c) be the position vectors of points A, B, C r...

    Text Solution

    |

  11. If vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k) and vec(c)...

    Text Solution

    |

  12. The following item consists of two statements, one labelled the Assert...

    Text Solution

    |

  13. If hat(a) and hat(b) are the unit vectors along vec(a) and vec(b) resp...

    Text Solution

    |

  14. What are the unit vectors parallel to xy-plane and perpendicular to th...

    Text Solution

    |

  15. What is the vector in the xy-plane through origin and perpendicular to...

    Text Solution

    |

  16. Given vec(a)=2hat(i)-3hat(j)+4hat(k) and hat(b) is a unit vector codir...

    Text Solution

    |

  17. The magnitude of the vectors vec(a) and vec(b) are equal and the angle...

    Text Solution

    |

  18. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  19. Consider the diagonals of a quadrilateral formed by the vectors 3hat(i...

    Text Solution

    |

  20. What is the area of the triangle with vertices (0, 2,2), (2, 0, -1) an...

    Text Solution

    |