Home
Class 12
MATHS
Which one of the following vectors of ma...

Which one of the following vectors of magnitude `sqrt(51)` makes equal angles with three vectors
`vec(a)=(hat(i)-2hat(j)+2hat(k))/(3), vec(b)=(-4hat(i)-3hat(k))/(5) and vec(c)=hat(j)`?

A

`5hat(i)-hat(j)-5hat(k)`

B

`5hat(i)+hat(j)+5hat(k)`

C

`-5hat(i)-hat(j)+5hat(k)`

D

`5hat(i)+5hat(j)-k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding a vector \( \vec{P} \) of magnitude \( \sqrt{51} \) that makes equal angles with the vectors \( \vec{A} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3} \), \( \vec{B} = \frac{-4\hat{i} - 3\hat{k}}{5} \), and \( \vec{C} = \hat{j} \), we will follow these steps: ### Step 1: Define the vector \( \vec{P} \) Let \( \vec{P} = x\hat{i} + y\hat{j} + z\hat{k} \). ### Step 2: Set the magnitude of \( \vec{P} \) The magnitude of \( \vec{P} \) is given by: \[ |\vec{P}| = \sqrt{x^2 + y^2 + z^2} = \sqrt{51} \] Squaring both sides, we get: \[ x^2 + y^2 + z^2 = 51 \tag{1} \] ### Step 3: Use the condition of equal angles The condition that \( \vec{P} \) makes equal angles with \( \vec{A} \), \( \vec{B} \), and \( \vec{C} \) implies: \[ \frac{\vec{P} \cdot \vec{A}}{|\vec{P}| |\vec{A}|} = \frac{\vec{P} \cdot \vec{B}}{|\vec{P}| |\vec{B}|} = \frac{\vec{P} \cdot \vec{C}}{|\vec{P}| |\vec{C}|} = \cos \theta \] ### Step 4: Calculate \( |\vec{A}| \), \( |\vec{B}| \), and \( |\vec{C}| \) 1. For \( \vec{A} \): \[ |\vec{A}| = \left|\frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}\right| = \frac{1}{3} \sqrt{1^2 + (-2)^2 + 2^2} = \frac{1}{3} \sqrt{1 + 4 + 4} = \frac{1}{3} \sqrt{9} = 1 \] 2. For \( \vec{B} \): \[ |\vec{B}| = \left|\frac{-4\hat{i} - 3\hat{k}}{5}\right| = \frac{1}{5} \sqrt{(-4)^2 + 0^2 + (-3)^2} = \frac{1}{5} \sqrt{16 + 9} = \frac{1}{5} \sqrt{25} = 1 \] 3. For \( \vec{C} \): \[ |\vec{C}| = |\hat{j}| = 1 \] ### Step 5: Set up the dot product equations Now, we can write the dot product equations: 1. For \( \vec{A} \): \[ \vec{P} \cdot \vec{A} = x \cdot \frac{1}{3} + y \cdot \frac{-2}{3} + z \cdot \frac{2}{3} = \frac{x - 2y + 2z}{3} \] 2. For \( \vec{B} \): \[ \vec{P} \cdot \vec{B} = x \cdot \frac{-4}{5} + y \cdot 0 + z \cdot \frac{-3}{5} = \frac{-4x - 3z}{5} \] 3. For \( \vec{C} \): \[ \vec{P} \cdot \vec{C} = 0 + y + 0 = y \] ### Step 6: Set the equations equal to each other Since all three dot products are equal: \[ \frac{x - 2y + 2z}{3} = \frac{-4x - 3z}{5} = y \] ### Step 7: Solve the equations From the first two equations: \[ 5(x - 2y + 2z) = 3(-4x - 3z) \] Expanding gives: \[ 5x - 10y + 10z = -12x - 9z \implies 17x - 10y + 19z = 0 \tag{2} \] From the second and third equations: \[ \frac{-4x - 3z}{5} = y \implies -4x - 3z = 5y \implies 4x + 5y + 3z = 0 \tag{3} \] ### Step 8: Solve the system of equations We now have two equations (2) and (3): 1. \( 17x - 10y + 19z = 0 \) 2. \( 4x + 5y + 3z = 0 \) We can solve this system using substitution or elimination methods. ### Step 9: Substitute and solve From equation (3), express \( z \): \[ z = -\frac{4x + 5y}{3} \] Substituting into equation (2): \[ 17x - 10y + 19\left(-\frac{4x + 5y}{3}\right) = 0 \] Multiply through by 3 to eliminate the fraction: \[ 51x - 30y - 76x - 95y = 0 \implies -25x - 125y = 0 \implies x + 5y = 0 \implies x = -5y \] ### Step 10: Substitute back to find \( z \) Substituting \( x = -5y \) into (3): \[ 4(-5y) + 5y + 3z = 0 \implies -20y + 5y + 3z = 0 \implies 3z = 15y \implies z = 5y \] ### Step 11: Substitute into the magnitude equation Now substituting \( x = -5y \) and \( z = 5y \) into equation (1): \[ (-5y)^2 + y^2 + (5y)^2 = 51 \implies 25y^2 + y^2 + 25y^2 = 51 \implies 51y^2 = 51 \implies y^2 = 1 \implies y = \pm 1 \] ### Step 12: Find \( x \) and \( z \) If \( y = 1 \): \[ x = -5(1) = -5, \quad z = 5(1) = 5 \quad \Rightarrow \quad \vec{P} = -5\hat{i} + 1\hat{j} + 5\hat{k} \] If \( y = -1 \): \[ x = -5(-1) = 5, \quad z = 5(-1) = -5 \quad \Rightarrow \quad \vec{P} = 5\hat{i} - 1\hat{j} - 5\hat{k} \] ### Conclusion The two vectors \( \vec{P} = -5\hat{i} + 1\hat{j} + 5\hat{k} \) and \( \vec{P} = 5\hat{i} - 1\hat{j} - 5\hat{k} \) both have a magnitude of \( \sqrt{51} \) and make equal angles with the given vectors.

To solve the problem of finding a vector \( \vec{P} \) of magnitude \( \sqrt{51} \) that makes equal angles with the vectors \( \vec{A} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3} \), \( \vec{B} = \frac{-4\hat{i} - 3\hat{k}}{5} \), and \( \vec{C} = \hat{j} \), we will follow these steps: ### Step 1: Define the vector \( \vec{P} \) Let \( \vec{P} = x\hat{i} + y\hat{j} + z\hat{k} \). ### Step 2: Set the magnitude of \( \vec{P} \) The magnitude of \( \vec{P} \) is given by: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Find a vector of magnitude 6 which is perpendicular to both the vectors vec(a)= 4 hat(i)-hat(j) + 3 hat(k) and vec(b) = -2 hat(i) + hat(j)- 2 hat(k).

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)(hat(i)-2hat(j)+3hat(k)) .

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

Find the value of lambda for which the vectors vec(a), vec(b), vec(c) are coplanar, where (i) vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k)) (ii) vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k) (iii) vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)

Find a vector of magnitude 5 units,and parallel to the resultant of the vectors vec a=2hat i+3hat j-hat k and vec b=hat i-2hat j+hat k

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If P, Q, R are the mid-points of the sides AB, BC and CA respectively ...

    Text Solution

    |

  2. What is the length of the vector (1, 1) ?

    Text Solution

    |

  3. Which one of the following vectors of magnitude sqrt(51) makes equal a...

    Text Solution

    |

  4. If |vec(a)|=2, |vec(b)|=5 and |vec(a)xxvec(b)|, then what is vec(a). v...

    Text Solution

    |

  5. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, then which one of the following is...

    Text Solution

    |

  6. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  7. Let vec(a), vec(b), vec(c) be the position vectors of points A, B, C r...

    Text Solution

    |

  8. If vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k) and vec(c)...

    Text Solution

    |

  9. The following item consists of two statements, one labelled the Assert...

    Text Solution

    |

  10. If hat(a) and hat(b) are the unit vectors along vec(a) and vec(b) resp...

    Text Solution

    |

  11. What are the unit vectors parallel to xy-plane and perpendicular to th...

    Text Solution

    |

  12. What is the vector in the xy-plane through origin and perpendicular to...

    Text Solution

    |

  13. Given vec(a)=2hat(i)-3hat(j)+4hat(k) and hat(b) is a unit vector codir...

    Text Solution

    |

  14. The magnitude of the vectors vec(a) and vec(b) are equal and the angle...

    Text Solution

    |

  15. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  16. Consider the diagonals of a quadrilateral formed by the vectors 3hat(i...

    Text Solution

    |

  17. What is the area of the triangle with vertices (0, 2,2), (2, 0, -1) an...

    Text Solution

    |

  18. If the angle between the vectors vec(a) and vec(b) is (pi)/(3), what ...

    Text Solution

    |

  19. Consider the following statements 1. For any three vectors vec(a), ...

    Text Solution

    |

  20. Let vec a\ a n d\ vec b be two unit vectors and alpha be the angle b...

    Text Solution

    |