Home
Class 12
MATHS
If vec(a)=hat(i)+hat(j)+hat(k), vec(b)=h...

If `vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k) and vec(c)=hat(i)+hat(j)-hat(k)`, then what is `vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))` equal to?

A

`2hat(i)+3hat(j)-hat(k)`

B

`2hat(i)-3hat(j)-hat(k)`

C

`3hat(i)+hat(j)+hat(k)`

D

`vec(0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) \] Given: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} \] \[ \vec{c} = \hat{i} + \hat{j} - \hat{k} \] ### Step 1: Calculate \(\vec{b} + \vec{c}\) \[ \vec{b} + \vec{c} = (\hat{i} - \hat{j} + \hat{k}) + (\hat{i} + \hat{j} - \hat{k}) = 2\hat{i} + 0\hat{j} + 0\hat{k} = 2\hat{i} \] ### Step 2: Calculate \(\vec{c} + \vec{a}\) \[ \vec{c} + \vec{a} = (\hat{i} + \hat{j} - \hat{k}) + (\hat{i} + \hat{j} + \hat{k}) = 2\hat{i} + 2\hat{j} + 0\hat{k} = 2\hat{i} + 2\hat{j} \] ### Step 3: Calculate \(\vec{a} + \vec{b}\) \[ \vec{a} + \vec{b} = (\hat{i} + \hat{j} + \hat{k}) + (\hat{i} - \hat{j} + \hat{k}) = 2\hat{i} + 0\hat{j} + 2\hat{k} = 2\hat{i} + 2\hat{k} \] ### Step 4: Calculate \(\vec{a} \times (\vec{b} + \vec{c})\) \[ \vec{a} \times (2\hat{i}) = (1\hat{i} + 1\hat{j} + 1\hat{k}) \times (2\hat{i}) = 2(\hat{j} \times \hat{i} + \hat{k} \times \hat{i}) = 2(-\hat{k} + \hat{j}) = 2\hat{j} - 2\hat{k} \] ### Step 5: Calculate \(\vec{b} \times (\vec{c} + \vec{a})\) \[ \vec{b} \times (2\hat{i} + 2\hat{j}) = (\hat{i} - \hat{j} + \hat{k}) \times (2\hat{i} + 2\hat{j}) = 2(\hat{i} \times \hat{i} + \hat{j} \times \hat{i}) - 2(\hat{j} \times \hat{j} + \hat{k} \times \hat{i}) = 2(0 + \hat{k}) - 2(0 - \hat{j}) = 2\hat{k} + 2\hat{j} \] ### Step 6: Calculate \(\vec{c} \times (\vec{a} + \vec{b})\) \[ \vec{c} \times (2\hat{i} + 2\hat{k}) = (\hat{i} + \hat{j} - \hat{k}) \times (2\hat{i} + 2\hat{k}) = 2(\hat{i} \times \hat{i} + \hat{j} \times \hat{i}) - 2(\hat{k} \times \hat{i}) = 2(0 + \hat{k}) - 2(-\hat{j}) = 2\hat{k} + 2\hat{j} \] ### Step 7: Combine all the results Now we sum up all the cross products calculated: \[ \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) \] \[ = (2\hat{j} - 2\hat{k}) + (2\hat{k} + 2\hat{j}) + (2\hat{k} + 2\hat{j}) \] \[ = 2\hat{j} - 2\hat{k} + 2\hat{k} + 2\hat{j} + 2\hat{k} + 2\hat{j} \] \[ = (2\hat{j} + 2\hat{j} + 2\hat{j}) + (-2\hat{k} + 2\hat{k}) = 6\hat{j} + 0\hat{k} = 6\hat{j} \] ### Final Result Thus, the final answer is: \[ \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = 6\hat{j} \]

To solve the problem, we need to evaluate the expression: \[ \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) \] Given: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k) , then what is (vec(a)+vec(b))xx(vec(a)-vec(b)) equal to ?

If vec(a) = 3 hat(i) + 2 hat(k) , vec(b) = 3hat(j) - hat(k) and vec(c ) = hat(i) + hat(j) + hat(k) . Find ( vec(a) xx vec(b)). vec(c ) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(a)=ht(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yhat(i)+xhat(j)+(1+x-y)hat(k) . then vec(a).(vec(b) xx vec (c)) depends on

Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k) and vec(d) = 3hat(i) - hat(j) - 2hat(k) , then . If vec(a) xx (vec(b) xx vec(c)) = pvec(a) + qvec(b) + rvec(c) , then find value of p,q are r.

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  2. Let vec(a), vec(b), vec(c) be the position vectors of points A, B, C r...

    Text Solution

    |

  3. If vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k) and vec(c)...

    Text Solution

    |

  4. The following item consists of two statements, one labelled the Assert...

    Text Solution

    |

  5. If hat(a) and hat(b) are the unit vectors along vec(a) and vec(b) resp...

    Text Solution

    |

  6. What are the unit vectors parallel to xy-plane and perpendicular to th...

    Text Solution

    |

  7. What is the vector in the xy-plane through origin and perpendicular to...

    Text Solution

    |

  8. Given vec(a)=2hat(i)-3hat(j)+4hat(k) and hat(b) is a unit vector codir...

    Text Solution

    |

  9. The magnitude of the vectors vec(a) and vec(b) are equal and the angle...

    Text Solution

    |

  10. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  11. Consider the diagonals of a quadrilateral formed by the vectors 3hat(i...

    Text Solution

    |

  12. What is the area of the triangle with vertices (0, 2,2), (2, 0, -1) an...

    Text Solution

    |

  13. If the angle between the vectors vec(a) and vec(b) is (pi)/(3), what ...

    Text Solution

    |

  14. Consider the following statements 1. For any three vectors vec(a), ...

    Text Solution

    |

  15. Let vec a\ a n d\ vec b be two unit vectors and alpha be the angle b...

    Text Solution

    |

  16. What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k...

    Text Solution

    |

  17. What is the geometric interpretation of the identity (vec(a)-vec(b))xx...

    Text Solution

    |

  18. The vec b which is collinear with the vector vec a = (2,1,-1) and sati...

    Text Solution

    |

  19. The vectors vec(a)=xvec(i)+y vec(j)+zvec(k), vec(b)=hat(k), vec(c) are...

    Text Solution

    |

  20. If the position vector of a point p with respect to the origin O is ha...

    Text Solution

    |