Home
Class 12
MATHS
Consider the following statements 1. ...

Consider the following statements
1. For any three vectors `vec(a), vec(b), vec(c)`,
`vec(a). {(vec(a)+vec(c))xx(vec(a)+vec(b)+vec(c))}=0`
2. For any three coplanar unit vectors
`vec(d), vec(e), vec(f), (vec(d)xxvec(e)).vec(f)=1`
Which of the statements given above is/are correct?

A

1 only

B

2 only

C

Both 1 and 2

D

Neither 1 nor 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements given and determine their validity step by step. ### Step 1: Analyze the First Statement The first statement is: 1. For any three vectors \(\vec{a}, \vec{b}, \vec{c}\), \(\vec{a} \cdot ((\vec{a} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c})) = 0\). To prove this, we will use the properties of the dot and cross products. #### Step 1.1: Expand the Cross Product We start by expanding the cross product: \[ (\vec{a} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \times (\vec{a} + \vec{b} + \vec{c}) + \vec{c} \times (\vec{a} + \vec{b} + \vec{c}). \] Using the distributive property of the cross product: \[ = \vec{a} \times \vec{a} + \vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b} + \vec{c} \times \vec{c}. \] Since \(\vec{a} \times \vec{a} = 0\) and \(\vec{c} \times \vec{c} = 0\), we can simplify this to: \[ = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{c} \times \vec{b}. \] #### Step 1.2: Take the Dot Product Now we take the dot product with \(\vec{a}\): \[ \vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot (\vec{a} \times \vec{c}) + \vec{a} \cdot (\vec{c} \times \vec{b}). \] Using the property that the dot product of a vector with a cross product of itself and another vector is zero: \[ \vec{a} \cdot (\vec{a} \times \vec{b}) = 0, \quad \vec{a} \cdot (\vec{a} \times \vec{c}) = 0. \] Thus, we are left with: \[ \vec{a} \cdot (\vec{c} \times \vec{b}). \] This expression is not necessarily zero unless \(\vec{a}, \vec{b}, \vec{c}\) are coplanar. Therefore, the statement is true for any three vectors. ### Step 2: Analyze the Second Statement The second statement is: 2. For any three coplanar unit vectors \(\vec{d}, \vec{e}, \vec{f}\), \((\vec{d} \times \vec{e}) \cdot \vec{f} = 1\). #### Step 2.1: Understand Coplanarity For three vectors to be coplanar, the volume of the parallelepiped formed by them must be zero. This implies: \[ (\vec{d} \times \vec{e}) \cdot \vec{f} = 0. \] This means that the cross product \(\vec{d} \times \vec{e}\) is orthogonal to the plane formed by \(\vec{d}\) and \(\vec{e}\), and hence it cannot equal 1. ### Conclusion 1. The first statement is **true**. 2. The second statement is **false**. ### Final Answer Only the first statement is correct.

To solve the problem, we need to analyze the two statements given and determine their validity step by step. ### Step 1: Analyze the First Statement The first statement is: 1. For any three vectors \(\vec{a}, \vec{b}, \vec{c}\), \(\vec{a} \cdot ((\vec{a} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c})) = 0\). To prove this, we will use the properties of the dot and cross products. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

Consider the following statements 1. For any three vectors vec(a) vec(b) vec(c ) vec(a).{(vec(b) + vec(c )) xx vec(a) + vec(b) + vec(c )}=0 2. for any three coplanar vectors vec(d), vec(e ), vec(f), (vec(d) xx vec(e )) .vec(f )= 0

For any three coplanar vectors vec(a), vec(b), vec(c ) , show that vec(a)-vec(b), vec(b)-vec(c ), vec(c )-vec(a) are coplanar.

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

For any three vectors vec a;vec b;vec c find [vec a+vec b;vec b+vec c;vec c+vec a]

If any two of three vectors vec(a), vec(b), vec(c ) are parallel, then [vec(a)vec(b)vec(c )]= __________.

For any three vectors vec(A), vec(B) and vec(C) prove that vec(A) xx (vec(B) +vec(C)) +vec(B) xx (vec(C) +vec(A)) + vec(C) xx (vec(A) +vec(B)) = vec(O)

For any three vectors a b,c,show that vec a xx(vec b+vec c)+vec b xx(vec c+vec a)+vec c xx(vec a+vec b)=0

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a), vec c xx (vec a xxvec b) are

For any three vectors vec a, vec b & vec c prove that (vec b xxvec c) xx (vec c xxvec a) = [vec with bvec c] vec c

If a, b and c are any three vectors, then prove that vec a.(vec b+vec c)=(vec a.vec b)+(vec a.vec c)

NDA PREVIOUS YEARS-VECTORS -MATH
  1. What is the area of the triangle with vertices (0, 2,2), (2, 0, -1) an...

    Text Solution

    |

  2. If the angle between the vectors vec(a) and vec(b) is (pi)/(3), what ...

    Text Solution

    |

  3. Consider the following statements 1. For any three vectors vec(a), ...

    Text Solution

    |

  4. Let vec a\ a n d\ vec b be two unit vectors and alpha be the angle b...

    Text Solution

    |

  5. What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k...

    Text Solution

    |

  6. What is the geometric interpretation of the identity (vec(a)-vec(b))xx...

    Text Solution

    |

  7. The vec b which is collinear with the vector vec a = (2,1,-1) and sati...

    Text Solution

    |

  8. The vectors vec(a)=xvec(i)+y vec(j)+zvec(k), vec(b)=hat(k), vec(c) are...

    Text Solution

    |

  9. If the position vector of a point p with respect to the origin O is ha...

    Text Solution

    |

  10. Let a, b and c be the distinct non-negative numbers. If the vectors a ...

    Text Solution

    |

  11. If vec(a)=ht(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yha...

    Text Solution

    |

  12. PQRS is a parallelogram, where vec(PQ)=3hat(i)+2hat(j)-mhat(k), vec(PS...

    Text Solution

    |

  13. What is the vector equally inclined to the vectors hat(i)+3hat(j) and ...

    Text Solution

    |

  14. ABCD is a quadrilateral. Forces vec(AB), vec(CB), vec(CD) and vec(DA)...

    Text Solution

    |

  15. Find the area of the triangle whose vertices are A(3,-1,2),\ B(1,-1,-3...

    Text Solution

    |

  16. What is the value of b such that the scalar product of the vector hat(...

    Text Solution

    |

  17. Let p, q, r and s be respectively the magnitudes of the vectors 3hat(i...

    Text Solution

    |

  18. If x hat(i)+ y hat(j)+zhat(k) is a unit vector and x:y:z=sqrt(3):2:3, ...

    Text Solution

    |

  19. Which one of the following is the unit vector perpendicular to the vec...

    Text Solution

    |

  20. Consider the following statements in respect of the vectors vec(u(1))=...

    Text Solution

    |