Home
Class 12
MATHS
What is the projection of the vector hat...

What is the projection of the vector `hat(i)-2hat(j)-hat(k)` on the vector `4hat(i)-4hat(j)+7hat(k)`?

A

`(sqrt(5))/(2)`

B

`(19)/(9)`

C

`(sqrt(5))/(4)`

D

`(11)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \( \hat{i} - 2\hat{j} - \hat{k} \) on the vector \( 4\hat{i} - 4\hat{j} + 7\hat{k} \), we can follow these steps: ### Step 1: Define the vectors Let: - \( \mathbf{a} = \hat{i} - 2\hat{j} - \hat{k} \) - \( \mathbf{b} = 4\hat{i} - 4\hat{j} + 7\hat{k} \) ### Step 2: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \) The dot product is calculated as follows: \[ \mathbf{a} \cdot \mathbf{b} = (1)(4) + (-2)(-4) + (-1)(7) \] Calculating each term: - \( 1 \cdot 4 = 4 \) - \( -2 \cdot -4 = 8 \) - \( -1 \cdot 7 = -7 \) Now, sum these results: \[ \mathbf{a} \cdot \mathbf{b} = 4 + 8 - 7 = 5 \] ### Step 3: Calculate the magnitude of vector \( \mathbf{b} \) The magnitude of \( \mathbf{b} \) is given by: \[ |\mathbf{b}| = \sqrt{(4)^2 + (-4)^2 + (7)^2} \] Calculating each square: - \( 4^2 = 16 \) - \( (-4)^2 = 16 \) - \( 7^2 = 49 \) Now sum these: \[ |\mathbf{b}| = \sqrt{16 + 16 + 49} = \sqrt{81} = 9 \] ### Step 4: Calculate the projection of \( \mathbf{a} \) on \( \mathbf{b} \) The projection of \( \mathbf{a} \) on \( \mathbf{b} \) is given by the formula: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b} \] First, we need \( |\mathbf{b}|^2 \): \[ |\mathbf{b}|^2 = 9^2 = 81 \] Now substitute the values: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{5}{81} \mathbf{b} \] Substituting \( \mathbf{b} \): \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{5}{81} (4\hat{i} - 4\hat{j} + 7\hat{k}) = \left(\frac{20}{81}\hat{i} - \frac{20}{81}\hat{j} + \frac{35}{81}\hat{k}\right) \] ### Final Answer The projection of the vector \( \hat{i} - 2\hat{j} - \hat{k} \) on the vector \( 4\hat{i} - 4\hat{j} + 7\hat{k} \) is: \[ \frac{20}{81}\hat{i} - \frac{20}{81}\hat{j} + \frac{35}{81}\hat{k} \]

To find the projection of the vector \( \hat{i} - 2\hat{j} - \hat{k} \) on the vector \( 4\hat{i} - 4\hat{j} + 7\hat{k} \), we can follow these steps: ### Step 1: Define the vectors Let: - \( \mathbf{a} = \hat{i} - 2\hat{j} - \hat{k} \) - \( \mathbf{b} = 4\hat{i} - 4\hat{j} + 7\hat{k} \) ### Step 2: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

What is the projection of the vector hat(i)-2 hat(j) + hat(k) on the vector 4hat(i) - 4hat(j)+ 7hat(k) ?

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

The projection of the vector vec(A)= hat(i)-2hat(j)+hat(k) on the vector vec(B)= 4hat(i)-4hat(j)+7hat(k) is

Find the projection of the vector hat i+3hat j+7hat k on the vector 7hat i-hat j+8hat k

Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) on 2hat(i)+6hat(j)+3hat(k)

Writhe the projection of the vector 7hat i+hat j-4hat k on the vector 2hat i+6hat j+3hat k

Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) on hat(i)-2hat(j)+hat(k) .

Find the projection of the vector hat i+3hat j+7hat k on the vector 2hat i-3hat j+6hat k

Write the projection of vector hat i+hat j+hat k along the vector hat j.

Find the projection of vector hat i+3hat j+7hat k on the vector 7hat i-hat j+8hat k

NDA PREVIOUS YEARS-VECTORS -MATH
  1. What is the sine of angle between the vectors hat(i)+2hat(j)+3hat(k) a...

    Text Solution

    |

  2. The vector vec(a) lies in the plane of vectors vec(b) and vec(c). Whi...

    Text Solution

    |

  3. What is the projection of the vector hat(i)-2hat(j)-hat(k) on the vect...

    Text Solution

    |

  4. If vec(a). vec(b) = 0 and vec(a) xx vec(b) = vec(0) then which one of ...

    Text Solution

    |

  5. If the vectors -hat(i)-2xhat(j)-3y hat(k) and hat(i)-3x hat(j)-2y hat(...

    Text Solution

    |

  6. If vec c is a unit vector perpendicular to the vectors vec a\ a n d\...

    Text Solution

    |

  7. For what value of m are the points with position vectors 10hat(i)+3hat...

    Text Solution

    |

  8. For what value of m are the vectors 2hat(i)-3hat(j)+4hat(k), hat(i)+3h...

    Text Solution

    |

  9. the area of triangle whose vertices are (1,2,3),(2,5-1) and (-1,1,2) i...

    Text Solution

    |

  10. What is the area of the rectangle having vertices A, B, C and D with p...

    Text Solution

    |

  11. If vec(a)=(2,1,-1), vec(b)=(1,-1,0), vec(c)=(5, -1,1), then what is th...

    Text Solution

    |

  12. If the magnitudes of two vectors a and b are equal then which one of t...

    Text Solution

    |

  13. Let O be the origin nad P, Q, R be the points such that vec(PO)+vec(OQ...

    Text Solution

    |

  14. What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+...

    Text Solution

    |

  15. If |vec(c)|=10, |vec(b)|=2 and vec(a)*vec(b)=12, then what is the valu...

    Text Solution

    |

  16. If the vectors hat(i)-x hat(j)-y hat(k) and hat(i)+x hat(j)+y hat(k) a...

    Text Solution

    |

  17. EFGH is a rhombus such that the angle EFG is 60^(@). The magnitude of ...

    Text Solution

    |

  18. If vec(a). vec(b) = 0 and vec(a) xx vec(b) = vec(0) then which one of ...

    Text Solution

    |

  19. The vector vec(a) xx (vec(b)xx vec(a)) is coplanar with :

    Text Solution

    |

  20. Consider the following : 1. 4hat(i)xx3hat(i)=hat(0) " " 2. (4hat(i)...

    Text Solution

    |