Home
Class 12
MATHS
For what value of m are the vectors 2hat...

For what value of m are the vectors `2hat(i)-3hat(j)+4hat(k), hat(i)+3hat(j)-hat(k) and m hat(i)-hat(j)+2 hat(k)` coplanar ?

A

`0`

B

`2/5`

C

`1`

D

`8//5`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( m \) for which the vectors \( \mathbf{A} = 2\hat{i} - 3\hat{j} + 4\hat{k} \), \( \mathbf{B} = \hat{i} + 3\hat{j} - \hat{k} \), and \( \mathbf{C} = m\hat{i} - \hat{j} + 2\hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors must be zero. ### Step-by-step Solution: 1. **Write the vectors in component form**: \[ \mathbf{A} = (2, -3, 4), \quad \mathbf{B} = (1, 3, -1), \quad \mathbf{C} = (m, -1, 2) \] 2. **Set up the determinant for the scalar triple product**: The scalar triple product can be expressed as the determinant of a matrix formed by the components of the vectors: \[ \begin{vmatrix} 2 & -3 & 4 \\ 1 & 3 & -1 \\ m & -1 & 2 \end{vmatrix} = 0 \] 3. **Calculate the determinant**: Expanding the determinant: \[ = 2 \begin{vmatrix} 3 & -1 \\ -1 & 2 \end{vmatrix} - (-3) \begin{vmatrix} 1 & -1 \\ m & 2 \end{vmatrix} + 4 \begin{vmatrix} 1 & 3 \\ m & -1 \end{vmatrix} \] Now, calculate each of the 2x2 determinants: \[ \begin{vmatrix} 3 & -1 \\ -1 & 2 \end{vmatrix} = (3)(2) - (-1)(-1) = 6 - 1 = 5 \] \[ \begin{vmatrix} 1 & -1 \\ m & 2 \end{vmatrix} = (1)(2) - (-1)(m) = 2 + m \] \[ \begin{vmatrix} 1 & 3 \\ m & -1 \end{vmatrix} = (1)(-1) - (3)(m) = -1 - 3m \] Substitute these back into the determinant: \[ 2(5) + 3(2 + m) + 4(-1 - 3m) = 0 \] Simplifying this gives: \[ 10 + 6 + 3m - 4 - 12m = 0 \] \[ 12 - 9m = 0 \] 4. **Solve for \( m \)**: Rearranging gives: \[ 9m = 12 \implies m = \frac{12}{9} = \frac{4}{3} \] ### Final Answer: The value of \( m \) for which the vectors are coplanar is: \[ \boxed{\frac{4}{3}} \]

To determine the value of \( m \) for which the vectors \( \mathbf{A} = 2\hat{i} - 3\hat{j} + 4\hat{k} \), \( \mathbf{B} = \hat{i} + 3\hat{j} - \hat{k} \), and \( \mathbf{C} = m\hat{i} - \hat{j} + 2\hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors must be zero. ### Step-by-step Solution: 1. **Write the vectors in component form**: \[ \mathbf{A} = (2, -3, 4), \quad \mathbf{B} = (1, 3, -1), \quad \mathbf{C} = (m, -1, 2) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

For what value of m are the vector 2hat(i) - 3hat(j) + 4hat(k), hat(i) + 2hat(j)- hat(k) and m hat(i) - hat(j)+ 2hat(k) coplanar?

What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+m hat(j)+5 hat(k) are coplanar?

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

What is the value of m, if the vector 2 hat(i) - hat(j) + hat(k), hat(i) + 2hat(j)- 3hat(k) and 3hat(i) + m hat(j)+ 5hat(k) are coplanar?

The vectors lamdahat(i)+hat(j)+2hat(k),hat(i)+lamdahat(j)-hat(k) and 2hat(i)-hat(j)+lamda hat(k) are coplanar, if

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If vec c is a unit vector perpendicular to the vectors vec a\ a n d\...

    Text Solution

    |

  2. For what value of m are the points with position vectors 10hat(i)+3hat...

    Text Solution

    |

  3. For what value of m are the vectors 2hat(i)-3hat(j)+4hat(k), hat(i)+3h...

    Text Solution

    |

  4. the area of triangle whose vertices are (1,2,3),(2,5-1) and (-1,1,2) i...

    Text Solution

    |

  5. What is the area of the rectangle having vertices A, B, C and D with p...

    Text Solution

    |

  6. If vec(a)=(2,1,-1), vec(b)=(1,-1,0), vec(c)=(5, -1,1), then what is th...

    Text Solution

    |

  7. If the magnitudes of two vectors a and b are equal then which one of t...

    Text Solution

    |

  8. Let O be the origin nad P, Q, R be the points such that vec(PO)+vec(OQ...

    Text Solution

    |

  9. What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+...

    Text Solution

    |

  10. If |vec(c)|=10, |vec(b)|=2 and vec(a)*vec(b)=12, then what is the valu...

    Text Solution

    |

  11. If the vectors hat(i)-x hat(j)-y hat(k) and hat(i)+x hat(j)+y hat(k) a...

    Text Solution

    |

  12. EFGH is a rhombus such that the angle EFG is 60^(@). The magnitude of ...

    Text Solution

    |

  13. If vec(a). vec(b) = 0 and vec(a) xx vec(b) = vec(0) then which one of ...

    Text Solution

    |

  14. The vector vec(a) xx (vec(b)xx vec(a)) is coplanar with :

    Text Solution

    |

  15. Consider the following : 1. 4hat(i)xx3hat(i)=hat(0) " " 2. (4hat(i)...

    Text Solution

    |

  16. What is the value of lambda for which (lambda hat(i)+hat(j)-hat(k))x...

    Text Solution

    |

  17. The magnitude of the scalar p for which the vector p(-3hat(i)-2hat(j)+...

    Text Solution

    |

  18. The vector 2 hat(j)-hat(k) lies :

    Text Solution

    |

  19. ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b), then what...

    Text Solution

    |

  20. If vec(beta) is perpendicular to both vec(alpha) and vec(lambda) where...

    Text Solution

    |